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Abstract

BACKGROUND: Chlorantraniliprole (CAP) is widely used in agriculture and forestry to prevent and control pests. The effects of
environmental CAP residue on non-target insect metamorphosis have not been reported. Our research aimed to investigate the
sublethal effect of CAP on larva–pupa transformation in silkworm, and explore the mechanism of sublethal CAP exposure-
mediated pupation metamorphosis defects.

RESULT: Sublethal CAP exposure affected the growth and development of silkworm larvae and caused defects in pupation meta-
morphosis. After CAP exposure, formation the of prepupa procuticle, ecdysial membrane and new epidermis was inhibited. Also,
the level of 20-hydroxyecdysone (20E) and mRNA levels of the 20E signaling pathway-related genes EcR, USP, E74, E75 and Ftz-f1
were significantly reduced.Moreover, genes involved in chitin synthesis, such as ChsA, CDA1 and CDA2, were downregulated. Injec-
tion of 20E led to the upregulation of chitin synthesis-related genes and increased formation of new epidermis in CAP-treated silk-
worm. However, injection of 20E failed to prevent downregulation of Ftz-f1 and the defects in pupation metamorphosis.

CONCLUSION: Our results suggested that 20E is a target hormone of CAP exposure-mediated epidermis formation phenotype.
Ftz-f1 was silenced by CAP and might be a direct target gene of sublethal CAP exposure. Our study provided new evidence of
the effects of sublethal CAP exposure on insect development and metamorphosis.
© 2020 Society of Chemical Industry
Supporting information may be found in the online version of this article.
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1 INTRODUCTION
The anthranilic diamides chlorantraniliprole (CAP) and cyantranili-
prole, and the phthalic diamide flubendiamide belong to a novel
class of insecticides that activate ryanodine receptors to release
and deplete intracellular Ca2+.1 These insecticides can lead to
feeding cessation, lethargy and muscle paralysis, and cause the
death of target insects including lepidopteran, coleopteran, dip-
teran and hemipteran pests.2–4 CAP has a low degradation rate
in the environment and its half-life in soil is 16.0 days.5 Low-dose
CAP treatment did not result in immediate death, but led to
abnormal development of pupae in Choristoneura rosaceana
(Harris) (Lepidoptera: Tortricidae) (0.001 mg L−1),4 and could sig-
nificantly reduce adult fecundity and offspring survival rates in
Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) Quarter
lethal concentration (LC25).

6,7 Recently, a commercialized formu-
lation of CAP has been registered and widely used in China.8

Improper and extensive use of insecticide not only pollutes culti-
vated soil and groundwater, but also leads to drug accumulation
in aquatic plants, resulting in sublethal exposure.9–11 Moreover,
pesticides, particularly insecticides, can also affect non-target
organisms such as predators of the target pest, economic insects

and beneficial organisms with sublethal effects.12 These sublethal
effects include disruption of molting and cuticle formation, reduc-
tion in adult longevity and fecundity, sex ratio change, and popu-
lation decline.13,14 CAP can reduce tibia length in Macrolophus
basicornis (Stal) (Hemiptera: Miridae),15,16 influence the number
of eggs laid and change the sex ratio of Bracon nigricans
(Szépligeti) (Hymenoptera: Braconidae) offspring.17,18 However,
the mechanism behind the sublethal effect of CAP residue on
insect pupation metamorphosis has not been reported.
Bombyx mori (Linnaeus) (Lepidoptera: Bombycidae) is not only

an important economic insect in China, with a history of silk

* Correspondence to: B Li, School of Basic Medicine and Biological Sciences,
Soochow University Postal address: Suzhou 215123, Jiangsu, China. E-mail:
lib@suda.edu.cn

† Joint senior authors.

a School of Basic Medicine and Biological Sciences, Soochow University, Suzhou,
People’s Republic of China

b Sericulture Institute of Soochow University, Suzhou, People’s Republic of China

Pest Manag Sci 2020 www.soci.org © 2020 Society of Chemical Industry

1

https://orcid.org/0000-0002-3331-5266
https://orcid.org/0000-0002-8647-7533
https://orcid.org/0000-0003-1315-4706
https://orcid.org/0000-0002-1843-8081
https://orcid.org/0000-0002-6554-2551
https://orcid.org/0000-0002-7640-9019
https://orcid.org/0000-0002-5380-8359
https://orcid.org/0000-0002-2072-2444
https://orcid.org/0000-0003-3818-9817
https://orcid.org/0000-0001-6504-2728
mailto:lib@suda.edu.cn


production of > 5000 years, but also a model organism of Lepi-
doptera, the second biggest order of insects. Because of its rela-
tively clear genetic background and complete genomic
information, the species is a good organism for studying insect
development and metamorphosis.19,20 The fat body is the central
organ integrating and coordinating different hormonal signals for
regulating insect development and metamorphosis.21 Silkworm
growth and development are mainly regulated by juvenile hor-
mone and 20-hydroxyecdysone (20E). A 20E signal can initiate
major developmental transitions in insects, including larval–larval
molting and larval–pupal–adult metamorphosis.22,23 The level of
20E increases before molting and pupation metamorphosis, lead-
ing to upregulation of 20E response genes.24 The ecdysone recep-
tor (EcR) and ultraspiracle (USP) form the functional nuclear
receptor complex of 20E. After binding to EcR–USP, 20E can activate
a small set of early response genes encoding several transcription
factors, which further activate a large set of late response genes.23

Ecdysone-induced E74, E75 and Ftz-f1 are thought to function
as transcription factors and play essential roles in initiating the
20E-induced gene expression cascade.24–26 Ftz-f1 functions as a
ligand-dependent transcription factor and is involved in diverse
biological processes in Drosophila melanogaster (Meigen) (Diptera:
Drosophilidae).26 Knockdown of Bm⊎FTZ-F1 in B. mori results in
abnormalities in larva to pupa transition.27

Insect metamorphosis includes formation of a new epidermis and
separation of the old epidermis. Chitin is the main component of
insect epidermis, and its production involves the dynamic balance
between chitin synthase (CHS) and chitin degradation enzyme. In
D.melanogaster, the ChsA gene encodes chitin in epidermis.28,29 Chi-
tin deacetylase (CDA) is a hydrolytic enzyme that catalyzes hydroly-
sis of the acetamido group in N-acetylglucosamine units of chitin
and chitosan, thus generating glucosamine and acetic acid.30 CDA
results in proper deacetylation of chitinmicrofilaments in the assem-
bly area to help chitin fold correctly.31 Inhibition of chitin synthetase
can prevent the synthesis of chitin in both larval and adult insects of
Stomoxys calcitrans (Linnaeus) (Diptera:Muscidae).32 In Tribolium cas-
taneum (Herbst) (Coleoptera: Tenebrionidae), knockdown of either
CDA1 or CDA2 affects all types of molts, including larval–larval,
larval–pupal and pupal–adult.33 Chitin synthase and CDA are the
key regulatory enzymes for chitin synthesis and excretion in insects.
Thus, these insect growth regulators are also specific targets of
insecticides that can inhibit the synthesis of chitin such as difluben-
zuron and lufenuron.33–35

In this study, we investigated the developmental and metamor-
phosis effects of sublethal CAP exposure in silkworm larvae. We also
analyzed the underlying mechanisms from the aspects of 20E sig-
naling pathway and chitin synthesis. This study provides a reference
for safety evaluation of sublethal CAP exposure in silkworm.

2 MATERIALS AND METHODS
2.1 Insect strains and chemicals
Larvae of B. mori (Jingsong × Haoyue) were stocked in our labora-
tory, the National Engineering Laboratory for Modern Silk, Soo-
chow University. Larvae were fed fresh mulberry (60 larvae/box)
three times per day in a plastic box (45 × 31 × 16 cm) (Lock &
Lock, Seoul, Korea), at 25 ± 1 °C, 12:12 h light/dark photoperiod,
and 75 ± 5% relative humidity. CAP (20% SC, Rynaxypyr™,
Dupont, Shanghai, China) was purchased from Shanghai Sheng-
nong Biochemical Products Co., Ltd. 20E (95%, reagent grade)
was purchased from Sangon Biological Technology and Services
Co., Ltd (Shanghai, China).

2.2 CAP exposure and 20E rescue experiment
CAP was delivered via the leaf-dipping method as described pre-
viously.36 The sublethal concentration (0.01 mg L−1) was deter-
mined by preliminary experiments, which ensured 100% survival
after 24 h CAP feeding of the fifth-instar larvae.36 CAP was dis-
solved in double-distilled (dd)H2O (200 mg L−1) to form the stock
solution and the working solution was prepared by diluting the
stock solution with ddH2O.

36,37 Silkworm larvae at the third day
of fifth instar were randomly selected for CAP treatment. The
treatment group was fed sublethal CAP-treated mulberry leaves,
and the control group was fed ddH2O-treated leaves. There were
three replicates in each group. After 24 h of feeding, CAP-treated
insects were fed the same mulberry leaves as the control group.
Twenty insects per replicate were collected to measure the body
weight, cocooning rate and good pupa rate. 20E was dissolved
in dimethyl sulfoxide to a final concentration of 0.4 μg μL−1. Thirty
CAP-treated insects (ten per replicate) were injected with 20E
solution (5 μL per larva) through the intersegmental membrane
using a micro-injector at prepupa stage (192 h after CAP
exposure).

2.3 Sample preparation
Silkworms from different treatments were dissected on ice at the
prepupa stage (216 h after CAP exposure). Hemolymph, fat body
and epidermis were collected from different treatment conditions
and stored at −80 °C. Hemolymph specimens were used for mea-
suring 20E levels. Fat body specimens were used for quantifying
the transcription level of 20E signaling pathway-related genes.
Epidermis specimens were collected for histopathological exami-
nation, scanning electron microscopy (SEM) and quantification of
transcription level of chitin synthesis-related genes.

2.4 ELISA analysis of ecdysone
The ecdysone level in hemolymph was determined by an
enzyme-linked immunosorbent assay (ELISA; Meimian, Nanjing,
China). The antibody was detected using a horseradish peroxide
chromogenic assay. After incubation with the substrate 3,30,5,50-
tetramethylbenzidine, ecdysone content was measured by opti-
cal density at 450 nm. The final ecdysone level was presented as
the mean ± SD of three replicates. All procedures were per-
formed according to the manufacturer’s instructions.

2.5 RNA extraction and cDNA synthesis
Total RNA was extracted from fat body and epidermis specimens
using TRIzol reagent (Takara, Dalian, China), followed by DNase
treatment to remove genomic DNA contamination. RNA was
quantified by NanoDrop-2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA), and its quality was assessed by aga-
rose gel (1.5%) electrophoresis. First-strand cDNAwas synthesized
with M-MLV reverse transcriptase and an oligo(dT) primer (Takara)
based on the manufacturer’s instructions.

2.6 Quantitative RT-PCR
All the sequences were found in National Center for Biotechnol-
ogy Information (NCBI). Quantitative reverse transcriptase poly-
merase chain reaction (qRT-PCR) primers were designed using
Primer 6.0 software (Premier Biosoft, Palo Alto, CA, USA), and syn-
thesized by Sangon. The qRT-PCR primers used in this study are
listed in Table 1. Actin-3 was used as the internal reference gene.
Real-time qPCR was performed using the Viia 7 Real-time PCR Sys-
tem (Applied Biosystems, Forster, CA, USA) with SYBR Premix Ex
Taq™ (Takara). The amplification cycle was as follows:
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denaturation at 95 °C for 1 min, followed by 45 cycles of 95 °C for
5 s, 55 °C for 10 s, and 72 °C for 10 s. Each biological replicate had
three technical replicates.

2.7 Histopathological examination
All histopathological examinations were performed following
standard laboratory procedures. Epidermis was embedded in par-
affin blocks, sliced into thin sections (5 μm), and placed on glass
slides. After hematoxylin–eosin staining, the sections were exam-
ined blind by a pathologist using a fluorescence inverse micro-
scope (Nikon eclipse TE2000-U, Nikon, Tokyo, Japan).

2.8 Scanning electron microscopy
A Hitachi S-4700 SEM (Hitachi, Tokyo, Japan) was used in this
study. Prepupal epidermis specimens were cleaned and dried
with critical point dryer (Labconco, Kansas, USA), and then
mounted using double-sided tape on SEM stubs. After coating
twice with gold in a polaron sputter-coater E-1010 (Hitachi), spec-
imens were examined at an accelerating voltage of 10–15 kV.
Photos were taken by SEM (Hitachi).

2.9 Statistical analysis
All the presented data were expressed as the mean ± SE of three
biological replicates. Growth curves were analyzed using one-way
analysis of variance (ANOVA) followed by Dunnett's t-test, other
data were analyzed using SPSS 19.0 (SPSS, Chicago, IL, USA) with
Student's t-test. P <0.05 was considered statistically significant
compared with the control. All figures were drawn using Origin
9.1E (Origin Lab, Northampton, MA, USA).

3 RESULTS
3.1 Effect of sublethal CAP on the pupation
metamorphosis of silkworm
After 48 h of CAP treatment, the body weight of silkworm
decreased significantly (P < 0.05), with average body weights at
48, 72, 96 and 120 h of 92.92% (P < 0.05), 88.47% (P < 0.001),
85.45% (P < 0.001) and 81.70% (P < 0.001) of the control group,

respectively (Fig. 1B; Table S1). After CAP treatment, the cocoon-
ing rate was decreased by 7.22% (P < 0.05) (Fig. 1C). Moreover,
there were abnormal pupae (Fig. 1Af), and the good pupa rate
was significantly reduced by 33.33% (P < 0.01) (Fig. 1C).
Pathological examination of epidermis at the prepupa stage

showed that the epidermis and epithelial cells were separated,
the cuticular protein and chitin fiber were accumulated in the pro-
cuticle with a certain thickness, and the old outer epidermis was
dissolved in the control group (Fig. 2A (a,c). We could also observe
obvious ecdysial membrane during the prepupa period (Fig. 2Ac).
Conversely, in the CAP exposure group, the epidermis and epithe-
lial cells were stuck together, no obvious ecdysial membrane was
formed at the prepupa stage, and formation of new epidermis
and dissolution of the old epidermis were minimal (Fig. 2Ab,d).
SEM results showed that, in the control group, development and
formation of new epidermis at the prepupa stage were relatively
complete and regular, and new cortex was clearly separated from
old cortex (Fig. 2Ba). In the CAP exposure group, the formation of
new epidermis was deficient, and separation between old and
new epidermis was incomplete (Fig. 2Bb).

3.2 Effect of sublethal CAP on the transcription levels of
20E signaling pathway related genes
20E is an important endogenous hormone regulating develop-
ment and metamorphosis. To study the mechanism of CAP expo-
sure on silkworm development and metamorphosis, we
performed qRT-PCR to detect the transcription levels of 20E-
related genes in the fat body. The results showed that mRNA
levels of EcR, USP, E74, E75 and Ftz-f1 in CAP-treated insects were
reduced to 43.14% (P < 0.05), 10.26% (P < 0.05), 26.18%
(P < 0.05), 64.59% (P < 0.001) and 29.05% (P < 0.01) of levels in
the control group (Fig. 3).

3.3 Effect of sublethal CAP exposure on 20E content and
the rescue experiment with 20E injection
20E content in hemolymph at the prepupa stage was analyzed by
ELISA. The results showed that the hormone level in the CAP-
treated group was 188.66 ng L−1, which was 23.88% (P < 0.01)

Table 1. Primer sequences used in quantitative RT-PCR

Gene name NCBI gene ID Prime sequences (50 to 30) Length of product (bp)

Actin-3 100145915 F:CGGCTACTCGTTCACTACC 147
R:CCGTCGGGAAGTTCGTAAG

EcR 692756 F:CGGCGAATCAGAAGTCTC 121
R:TCCTCGTCCTCTTCATCC

USP 693034 F:GTCGGTAACTGCGTTGAT 126
R:GGTGTGGTTGAAGGTGTAG

E74 693011 F:CCTTCTACCAGCATCATCA 111
R:CGCCGTAACCATATCCATA

E75 692595 F:ACCAGCAGTGTAGTATCCT 101
R:GAATCGCACAGCATCTCT

Ftz-f1 693070 F:ATGGTCTGTTATGCTGGTT 145
R:ATTGAAGTGGTCGGCTAAT

ChsA 100884166 F:ACAAGAGGCTCGCATAGCAG 136
R:CCAGACCACGTGAAGCTGAT

CDA1 732885 F:TCAGTTGTGCGACGGTAGAC 106
R:GGTGACGCTGTTCTCTAGGC

CDA2 732885 F:ACAAGATGACGACGGAGCTG 130
R:ACCTGACCTAGTGCACCTGA
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lower than in the control group (247.86 ng L−1). To further inves-
tigate the effect of ecdysone titer on pupation metamorphosis
after CAP exposure, we injected 20E into silkworms at the pre-
pupa stage and measured the ecdysone content at 24 h after
injection. The results showed that the hormone level in the CAP
+20E group was 635.35 ng L−1 (Fig. 4A), confirming the efficacy
of the injection. Interestingly, the transcription level of Ftz-f1 in
the CAP +20E groupwas still significantly lower in than the control
group (0.30 times control; P < 0.01), and not different from the
CAP-treated group (Fig. 4B). These results suggested that 20E
injection could significantly increase the level of ecdysone in pre-
pupa, but was not able to rescue the Ftz-f1 downregulation
caused by CAP exposure.

3.4 Effect of 20E injection on the transcription levels of
chitin synthesis-related genes and pupation
metamorphosis
To study the effect of 20E injection on chitin synthesis, we con-
ducted qRT-PCR tomeasure the relative transcription levels of chi-
tin synthesis-related genes after CAP exposure. The results
showed that ChsA, CDA1 and CDA2 were significantly downregu-
lated by CAP treatment (Fig. 5A). As expected, after 20E injection,
mRNA levels of these three genes increased significantly (Fig. 5A),
indicating that 20E injection can upregulate the transcription of
chitin synthesis-related genes. Moreover, we found increased for-
mation of new epidermal of prepupa in the CAP +20E group,

Nevertheless, pupation metamorphosis was still incomplete in
the CAP +20E group (Fig. 5Bc).

4 DISCUSSION
In this study, we used sublethal CAP to treat the fifth-instar silk-
worm larvae and found that pupationmetamorphosis at the pupa
stage was deficient, leading to incomplete pupation and abnor-
mal pupa. Moreover, 20E levels at the prepupa stage were
decreased, and the primary 20E response genes EcR, USP, E74
and E75were downregulated. One of the secondary 20E response
genes, Ftz-f1, which is closely related to metamorphosis and
pupation, was also downregulated. Transcription levels of chitin
synthesis-related genes were reduced as well. Taken together,
our results suggest that sublethal CAP exposure not only affected
the formation of epidermis, but also impeded larval–pupal meta-
morphosis development.
As an active form of ecdysone, 20E coordinates the major devel-

opmental transitions in insects. Fluctuation of the 20E level is
important for coordinating metamorphosis and molting, making
both ecdysteroid biosynthesis and inactivation of physiological
relevance.24,27 Reduction of the ecdysone concentration at the
pupal stage may kill the pupa or delay its maturation.38 In this
study, 20E content at the prepupa stage was decreased after
CAP treatment, leading to downregulation of a series of 20E
response genes.

Figure 1. The effects of sublethal chlorantraniliprole (CAP) on the development of silkworm. (A) Fifth-instar larvae, cocoon and pupa of the control (a, c, e)
and CAP-treated (b, d, f) groups. (B) Effects of CAP on the growth of Bombyx mori larvae. (c) Cocooning and good pupa rate. Statistical significance is indi-
cated by *P < 0.05, **P < 0.01, or ***P < 0.001. All data are presented as mean ± SE (n = 20).
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Knockdown of the genes involved in 20E signaling pathway
could reduce the expression of pupal-specific cuticle protein
genes, and prevent growth and differentiation of the wing
discs, which eventually leads to dead larvae or abnormal
pupae in different insect species.24, 38–40 Ftz-f1 is one of the
20E response genes, that regulates molting and metamorpho-
sis by initiating the expression of a series of downstream
genes. The exact timing of its action on the ecdysone response
genes is critical for proper development.27,41 Knockdown of
Ftz-f1 in insects at the pupal stage caused phenotypic defects
in eyes, antennal segments, wings and legs, and affected

emergence behavior.42,43 Also, silencing Ftz-f1 can cause larval
death prior to pupation, developmental arrest, and ecdysis
failure.44–47 In this study, the transcription level of Ftz-f1 was
decreased under CAP exposure, which might mediate abnor-
mal molting and metamorphosis at the prepupa stage. Ecdys-
teroid injection could rapidly promote adult development.48

In addition, the transcription level of Ftz-f1 gene in silkworm
was rapidly increased after 20E injection.49 In this research,
the transcription level of Ftz-f1 gene did not increase under
20E rescue in CAP-treated insects, suggesting Ftz-f1 might be
a target gene of CAP. Thus, sublethal CAP exposure reduced

Figure 2. Histopathological and SEM examination on the effects of sublethal chlorantraniliprole (CAP) on silkworm prepupa epidermis. (A) Epidermis
section of prepupa stage in the control group (a, c) and the CAP exposure group (b, d). Black arrow, accumulated procuticle; blue arrow, ecdysial mem-
brane secreted by epithelial cell. (B) SEM images of prepupa epidermis in the control group (a) and the CAP exposure group (b). NE, new epidermis; OE, old
epidermis.
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transcription of Ftz-f1, and affected metamorphosis and pupa-
tion, leading to pupation defects.
Insects need to exuviate the old epidermis and form new epi-

dermis when they grow to a certain stage. Larva–pupa

transformation involves both chitin synthesis and degradation
pathways.50–52 Insecticides like dichlorbenzuron, chlorfluazuron
and flufenoxuron can affect insect development and metamor-
phosis by inhibiting chitin synthesis.53 Thus, chitin has been con-
sidered as a selective target of pesticides for pests.36 CAP can
affect chitin synthesis in several pest species, such as Locusta
migratoria (Meyen) (Orthoptera: Locustidae), Spodoptera littoralis
(Boisduval) (Lepidoptera: Noctuidae) and Mythimna separata
(Walker) (Lepidoptera: Noctuidae).54–56 CAP can also affect chitin
synthesis in pest predators, like M. basicornis.15,16 However, the
effects of sublethal CAP on chitin synthesis and pupation meta-
morphosis are still unclear. In this study, sublethal CAP exposure
caused defects in epidermis formation at the prepupa stage.
Insect growth and development are strictly dependent on the
capability to remodel chitinous structures. Chitin synthesis A is
mainly responsible for the synthesis of insect epidermis chitin.57,58

Knockdown of ChsA in T. castaneum showed abnormal develop-
ment in larvae, pupae and even adults, and the chitin content in
abnormal prepupa was reduced.59,60 Inhibition the transcription
of ChsA caused delayed formation of pupa in Oxya chinensis
(Thunberg) (Orthoptera: Acridoidea),61 and also led to abnormal
molting in other insects.62 In this study, three chitin synthesis-
related genes were significantly downregulated after CAP expo-
sure. After injection of 20E, the transcription levels of these genes
were significantly increased, and new epidermis was formed.
These results suggested that 20E was the target hormone of sub-
lethal CAP exposure. Our study provides novel insights into the
mechanism of sublethal CAP exposure leading to failure in meta-
morphosis and pupation in insects.
Overall, our results suggested that 20E is a target hormone of

sublethal CAP exposure, and Ftz-f1 might be a direct target gene
of sublethal CAP exposure. Future study will focus on the mecha-
nism of how 20E regulates expression of Ftz-f1 under sublethal

Figure 3. Transcriptional levels of 20-hydroxyecdysone (20E) responding
genes in the fat body of prepupa stage. Statistical significance is indicated
by *P < 0.05, **P < 0.01 or ***P < 0.001. Data are expressed as mean
± SE (n = 3).

Figure 5. Effect of 20-hydroxyecdysone (20E) injection on the formation
of pupa epidermis. (A) mRNA levels of chitin-related genes in epidermis
at prepupa stage. (B) (a) Control group pupa, (b) chlorantraniliprole
(CAP)-treated pupa, and (c) CAP + 20E treated pupa. Statistical significance
is indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. Data are expressed
as the mean ± SE (n = 3).

Figure 4. Effect of 20-hydroxyecdysone (20E) injection on hormone and
Ftz-f1mRNA levels. (A) 20E concentration of hemolymph at prepupa stage.
(B) Transcription level of Ftz-f1 gene of the fat body in prepupa stage. Sta-
tistical significance is indicated by **P < 0.01 or ***P < 0.001. Data are
expressed as the mean ± SE (n = 3).
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CAP exposure. This study explored the mechanism of sublethal
CAP exposure-mediated pupation metamorphosis defects in silk-
worm, and provided evidence for the safe evaluation of CAP on a
non-target economic organism. Moreover, this study also pro-
vides a reference for evaluating the toxicity of environmental
CAP residues in pest pupation metamorphosis.
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