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Abstract

Background Parkinson’s disease (PD) is characterized by the degeneration of dopaminergic neurons in
the substantia nigra pars compacta (SNpc), accompanied by chronic neuroinflammation, autophagy
dysfunction and SNCA(a-synuclein) accumulation in the form of Lewy bodies. Previous studies show that
misfolded SNCA upregulate the inflammatory cascade through NOX activation, which elevated ROS
production in microglial cell. However, it’s still not elucidated about the molecular mechanisms between
autophagy deficiency and neuroinflammation induced by SNCA accumulation in microglia.

Methods We overexpress mice and BV2 cells with SNCAA53T mutant as models of early-onset
Parkinson's disease and identified the mechanisms that MAPK14-TFEB pathways promote microglia
activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease by a series of
methods of molecular biology. The results of pathology and animal behavior showed that the inhibition
of MAPK14 and NLRP3 had protective effect on Parkinson's disease model.

Results Here, we report that MAPK14 (p38a) activates NLRP3 inflammasome via inhibiting TFEB in BV2
cells. Transcription Factor EB (TFEB) signaling negatively regulates NLRP3 inflammasome through
increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-
mediated autophagy(CMA). Importantly, both MAPK14 inhibitor SB203580 and NLRP3 inhibitor MCC950
not only prevents neurodegeneration in vitro, but also alleviates movement impairment and SNCA/a-

AA53T

synuclein abnormal accumulation in SNC -tg mice model of Parkinson’s disease.

Conclusion Our research reveals an endogenous regulatory mechanism of NLRP3 turnover and microglia-
dopaminergic neuron interaction, which may be a potential therapeutic strategy for Parkinson’s disease.

Background

Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra,
resulting in neuromuscular dysfunction such as rest tremor. The mitochondrial dysfunction, calcium
dyshomeostasis, chronic inflammation and oxidative stress are contributed to the molecular
pathogenesis of PD. Previous studies shown that neuroinflammation may be the primary factor leading
to the process of PD-related pathogenesis and causing the degeneration and loss of dopaminergic
neurons. Proinflammatory cytokine such as tumor necrosis factor a and IL-1p were found to be
upregulated in the cerebrospinal fluid and blood of PD patients’. Moreover, activated microglia releases
proinflammatory cytokines which lead to neuronal death. Abnormal accumulation of SNCA causes
neuroinflammation, in turn, neuroinflammation exacerbates dopaminergic neurons loss. This vicious
circle closely associated with the pathological process of PD. The NLRP3 inflammasome was originally
defined by Tschopp that activates inflammatory caspases and release mature IL-18 and IL-182. The
NLRP3 inflammation complex contributes to the activation of the innate immune response and causes
cell pyrotosis?2. Recent studies demonstrated that NLRP3 inflammasome is involved in the progression
of neurodegenerative disease and NLRP3 deficiency plays a protective role in animal models of
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Alzheimer's disease (AD) and PD*®. Although the mechanisms that NLRP3 inflammasome participates in
diverse inflammatory diseases has been extensively investigated, its regulatory networks in microglia are
unclear.

Mitogen-activated protein kinases (MAPKSs) regulate various cellular processes. The p38 mitogen-
activated protein kinase, a prominent member of the MAPKSs, not only involved in cell cycle, cell death,
development, differentiation, senescence and tumorigenesis, but also functions as a specific class of
serine/threonine kinase regulating the inflammation responses. The important role of MAPK14-mediated
inflammatory responses was originally confirmed as the target of the pyridinyl imidazole that inhibited
inflammatory cytokines release in LPS-treated monocytes®. The MAPK pathways contributed to the
increased production of proinflammatory cytokines by microglia that treated with toll-like receptor (TLR)
ligands or beta-amyloid (AB)’. Recently, Mao and colleagues identified that MAPK14 inhibits autophagy
and promotes microglial inflammatory responses via ULK1 phosphorylation®. A few studies have
demonstrated that pharmacological inhibition of MAPK14 plays a protective role in several animal
models of neurodegenerative disease®~'!. Moreover, studies in vivo have also shown that MAPK14
deficiency plays a protective role in AD via enhancing the level of autophagy'?'3. Although the protective
effect of MAPK14 inhibition and its implication in neurodegenerative diseases are emerging, the
mechanisms by which MAPK14 regulates inflammatory responses in microglia remains elusive.

Here, we demonstrate that MAPK14-TFEB pathway regulates NLRP3 inflammasome degradation via
CMA. We identify that NLRP3 is a novel substrate for CMA and MAPK14 inhibits TFEB activity via
phosphorylation which blocks NLRP3 degradation. Besides, our results reveal that both MAPK14 inhibitor
SB203580 and NLRP3 inhibitor MCC950 reduced SNCA-induced microglia activation and dopaminergic
neuronal loss. All the results suggest the MAPK14-TFEB pathway may be a potential treatment target for
NLRP3 inflammasome-driven neurodegenerative diseases.

Materials And Methods

Animal. The SNCAA%3T-tg mice expressing mutant A53T SNCA (the 140 amino acid isoform) under the
direction of the mouse prion protein promoter has been described previously2®. The SNCAA%3T-tg mice
expressed mutant human A53T SNCA were purchased from Model Animal Research Center of Nanjing
University. The structure, location and onset of the inclusions seen in the mutant mice resemble
characteristics seen in human neuronal a-synucleinopathies and the transgenic mice are generally used
in the study of Parkinson's Disease. Animals were individually housed under light: dark (12:12 h) cycles
and provided with food and water.

Balance beam test. Mice were placed on a narrow beam (20 mm/12 mm) suspended 20 cm above soft
bedding, and their movement from one end towards the other end was recorded. The number of missteps
(paw faults, or slips) was scored during the trip.
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Pole test. This test was performed based on the method described by Ogawa?’ used as a measure for
bradykinesia. Mice (n = 8 in each group) were placed the top of a pole (55 cm in height, 10 mm in
diameter) with a rough surface. Both the time to turn and climb down was recorded.

Administration of the MAPK14 inhibitor SB203580 and MCC950. All animal procedures were approved by
the ethics committee of the Southern Medical University. All groups of animals received the inhibitor
SB203580 (5 mg/kg) and MCC950 (10 mg/kg) through intraperitoneal injection. In each experimental
cohort, male mice were randomly matched for group assignment. SNCA”%3T-tg mice were injected with
the drug starting from 5 months of age until the end of 9 months. Animals were sacrificed after the final
injection. The midbrain and cortex of half mice were dissected and used for Western blotting analysis.
Meanwhile, the other half mice were perfused with 4% paraformaldehyde and paraffinized coronal
sections were processed for immunohistochemistry assay.

Plasmids, Antibody and chemicals. EGFP-SNCA A53T (40823), PHM6-SNCA-A53T (40825), pAAVSNCA
WT (36055), pCDNA3 Flag p38a (20352), and pMT3-p38 (12658) were obtained from Addgene. The
following antibodies were used: anti-Parkin (Cell Signaling Technologies, #4211), anti-LC3A/B (Cell
Signaling Technologies, #12741), anti-beta Tubulin (Cell Signaling Technologies, #2146), anti-MAPK14
(Abcam, ab170099), anti-p-p38tyr182 (Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-
SNCA(Proteintech,10842-1-AP), anti-synapsin-1(Cell Signaling Technologies, #5297), anti-
NLRP3(Novus,NBP2-12446), anti-IL-1B(Abcam,ab9722), anti-TFEB(Proteintech,13372-1-AP), anti-
TH(Santa,sc-25269), anti-ACTB(CellSignaling Technologies; #4970), anti-LaminB (Proteintech,12987-1-
AP), anti-SQSTM1/P62(Proteintech, 18420-1-AP), anti-GAPDH(Proteintech, 10494-1-AP), anti-
CASP1(Proteintech, 22915-1-AP), anti-HSPA8(Proteintech, 66442-1-lg), anti-ASC(Cell Signaling
Technologies, #67824), anti-LAMP2A(Proteintech, 66301-1-Ig), anti-IBA-1(Cell Signaling Technologies,
#17198), anti-GFP(Proteintech, 50430-2-AP), anti-14-3-3(Cell Signaling Technologies, #95422), anti-
FLAG(Proteintech, 66008-3-lg). ELISA KITs were purchased from MEIMIAN (Guangzhou, China) including
CASP1(MM-0820M2) and IL-1B(MM-0040M2). SB203580 (Selleck, S1076) and MCC950 (Selleck, S7809)
were purchased from Selleckchem (Houston, TX, USA). The siRNA for MAPK14 was: 5 ' -
GGUCUGUUGGAUGUGUUCAdTAT-3". PCR primers of a-synucleinA53T-tg were: F 5'-
TGTAGGCTCCAAAACCAAGG-3', R 5-TGTCAGGATCCACAGGCATA-3.

Immunohistochemistry. The paraffin sections of brain tissue were collected for routine
immunohistochemistry staining for p-MAPK14 (1:50), TH (1:100), IBA-1 (1:100), IL-18 (1:100),
NLRP3(1:100), LAMP2A (1:100) and TFEB (1:100). The area of the midbrain dopaminergic neurons from
brain sections according to the anatomical position and the location of TH-positive neurons has been
described previously?8. Immunohistochemistry staining was assessed by two independent pathologists
with no prior knowledge of patient characteristics. In order to describe the image where were taken, we
provided the model of anatomical position of brain section and the lower power image of TH-positive
immunohistochemical brain section. As figure S3 A and S3 B shown that the image of SNpc were taken
according to TH positive location and the image of cortex were taken according to their anatomical
location. The percentage of positive cells and the expression levels of proteins in the brain tissue were
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scored according to intensity as previously described. Specifically, percentages <1%, 2%—25%, 26%—50%,
51%—-75% and =75% were scored as 0, 1, 2, 3 and 4, respectively; non-significant brown, light brown,
moderate brown and deep brown staining intensities were scored as 0, 1, 2 and 3, respectively. Combined
scoring was then calculated and graded as negative (-; 0-1), weak (+; 2-4), moderate (++; 5-8), and strong
(+++;9-12).

Transmission electron microscopy (TEM). SN4741 cells were washed once with PBS, collected with a cell
scraper. The sections of midbrain tissue were collected and washed once with cold PBS. Cell and
midbrain tissue pellets were resuspended in the fixative containing 2.5% glutaraldehyde in PBS at 4 °C.
Cell and midbrain tissue pellets were fixed for 3 h. After rinsing with sodium cacodylate buffer, they were
further fixed in 1% Os04 in sodium cacodylate buffer on ice for 1 h and dehydrated with acetone, and
then embedded in resin and polymerized at 60 °C for 48 h. Ultrathin sections were obtained on an
ultramicrotome and stained with uranyl acetate and lead citrate before observation under Hitachi H-7500
TEM.

Cell culture and transfection. SN4741 cells were cultured in DMEM medium containing 1% glucose, 100
U/ml penicillin-streptomycin, 1% L-glutamine and supplemented with 10% fetal bovine serum at 33°C.
BV2 cells were cultured in DMEM medium supplemented with 10% fetal bovine serum at 37°C.Cells were
transfected with Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer's
instructions.

Western blotting and co-immunoprecipitation. Cytosolic and nuclear fractions were collected using an
isolation kit (KeyGEN, Nanjing, China) following the manufacturer’s instructions. For Western blotting,
cells were collected in RIPA buffer containing 20 mM Tris-HCI, pH 7.4, 150 mM NaCl and 1% Triton X-100
with protease inhibitor cocktail (Roche, Nutley, NJ, USA). The extracts were centrifuged for 10 min at
13,000 rpm at 4 °C, and the supernatants were used for immunoblot analysis. For coimmunoprecipitation,
cells were centrifuged at 13,000 g for 10 min at 4 °C, and then the supernatant was transferred into a new
tube. And then 5 pg of the corresponding first antibody was added into the samples and incubating
overnight at 4 °C. On the next day, 50 pl agarose beads were added into the samples and incubating 2 h
at 4°C. The immunocomplex was collected with centrifugation at 1,500g for 1 min at 4 °C. And washed 3
times with RIPA buffer. Proteins were eluted from beads with 2x SDS loading buffer and subjected to
immunoblot analysis. The immunoreactive bands were detected by Odyssey Infrared Imaging System.
The band intensity was analyzed with Image J. Antibodies used in Western blotting are diluted by 1000,
except TH (1:100) and p-MAPK14(1:100).

Apoptosis and cell death. Cell apoptosis of SN4741 cell was measured using a Cell Apoptosis Kit
(Dojindo, Japan) according to the manufacturer's instructions. Percent of cell apoptosis was determined
by staining with 2 uM Annexin V and 2 pM Propidium lodide (PI). The number of cell apoptosis was
counted by flow cytometry and images of apoptosis was taken by Laser Scanning Confocal Microscopy.
Cell death of primary neuron was detected by staining with PI (1ug/ml) (KeyGEN) according to the
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manufacturer’s instructions. Images were captured by fluorescence microscope and analyzed by Image J
analysis software.

Measurement of mitochondrial membrane potential. The mitochondrial membrane potential in cells was
assessed using Tetramethylrhodamine methyl ester (TMRE; Thermo Fisher, T669). Cells were washed
with 1xPBS and then incubated with TMRE (0.1pM) in medium for 20 min in the dark. The intensity of
fluorescence was monitored using fluorescence microscope.

Linear range of detection in quantitative Western blot analysis. Determining the Linear Range for a Target
Protein and Housekeeping Protein (HKP as loading control). First, performing a Western blot with a serial
dilution of sample (an 8-12 point) and detecting target protein and HKP by Near-Infrared Western Blot
Detection Protocol (LI-FCOR). Then, Empiria Studio™ Software be used to detect the linear range. Empiria
Studio™ Software can generate the combined linear graph. For experiments, choose a level of sample
loading that falls in the middle of the combined linear range for the target protein and HKP. Avoid working
near the boundaries of the combined range. Whenever an experimental parameter is changed (such as
sample type, treatment conditions, transfer method, membrane, antibody, or detection reagents), the
combined linear range must be re-validated.

ELISA. Tissue specimen: After cutting the specimen, weigh 0.1 g of tissue, add 9 ml of PBS with pH 7.2-
7.4, and homogenize the specimen. Centrifuge for about 20 minutes (2000-3000 rpm) and carefully
collect the supernatant that used for ELISA detection following the manufacturer's instructions. Cell
culture medium: Cell culture medium was centrifuged and used for ELISA detection following the
manufacturer's instructions.

Immunofluorescence. Cells were grown on a confocal dish for 2 days, and then cells were washed with
PBS three times, then fixed with 4% paraformaldehyde for 15 min at room temperature. After that, cells
were permeabilized with frozen methanol for 10 min at -20 °C and blocked in 5% BSA for 30 min. And
then samples were incubated with primary antibody (1:100~1:200) in 5% BSA for overnight at 4°C, and
then incubated with secondary antibody (1:100) in 5% BSA for 1 h at room temperature. An Olympus
FV1000 confocal microscope with a 100x objective was used for image capture. The colocalization
signal was analyzed with Image Pro Plus software.

Statistical analysis. All data of experiments were analyzed with GraphPad Prism 7 software (La Joya, Ca,
USA). Data from Western blot and immunohistochemistry analysis were performed with the t test for two
groups or ANOVA with Tukey’s post-test (GraphPad Software) for multiple groups. Data from Balance
beam test, Pole test, Transmission electron microscopy, Immunofluorescence, were analyzed by two-way
ANOVA followed by Tukey'’s post-test. All values are expressed as the mean + SEM, and p values < 0.05
were considered statistically significant. All experiments were repeated at least 3 times.

Results

1. NLRP3 inflammasome is activated in SNCA*°3T-tg mice
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In order to investigate the effects of SNCA accumulation and related toxicity, we used SNCA A53T
transgenic mice (SNCA*%3T-tg mice). The accumulation of SNCA was identified in both the SNpc and the
cortex at 9 months of age (Fig.S1 A). To determine the effect of SNCA on NLRP3 inflammasome
activation, we measured the expression of core components of this multiprotein complex of the canonical
inflammasome in both the SNpc and the cortex of SNCAA%3T-tg mice by IHC and Western blotting. In the
brain sections of the SNpc and the cortex, NLRP3 inflammasome activation was remarkably intensified,
as evidenced by increased NLRP3 expression as well as over-production of IL-1B (Fig.1 A-D). Results of
Western blotting revealed that the protein level of NLRP3, ASC, cleaved CASP1 (caspasel) and cleaved IL-
1B were increased both in SNpc and cortex of SNCA”%3T-tg mice, which further demonstrated that the
NLRP3 inflammasome was activated in SNCA*>3T-tg mice (Fig.1 E-G). Besides, microglial activation, as
assessed morphologically by immunohistochemistry with the classic antibody specific for Iba-1,
microglia was activated in SNCA*%3T-tg mice brain both of the SNpc and the cortex (Fig.S1 B). To further
confirm this result, PD patients’ serum was assayed by ELISA. Consistently, over-production of IL-1B and
IL-18 were found in PD patients’ serum (Fig.S1 C-D). Collectively, these data suggest that the NLRP3
inflammasome is activated in the pathological process of PD.

2. NLRP3 inflammasome activation is suppressed by MAPK14 inhibitor SB203580

To examine whether MAPK14 involved in the NLRP3 inflammasome activation in PD, we first investigated
the levels of MAPK14 phosphorylation in the SNpc and the cortex by IHC. Results showed that compared
with wild-type mice, MAPK14 was activated in both the SNpc and the cortex of SNCA*3T-tg mice at 9
months of age (Fig.2 A, B). Western blotting also identified increased phosphorylated MAPK14 and SNCA
accumulation in the SNpc and the cortex of SNCA*%3T-tg mice (Fig.2 C, D, E).

To assess whether NLRP3 activation is mediated by MAPK14, SNCA”%3T-tg mice were injected with
MAPK14 inhibitor SB203580 starting at the age of 5 months until the end of 9 months (Fig.S2 A). Then,
we analyzed NLRP3 and IL-1B by IHC. The results showed that SB203580 significantly reduced the levels
of NLRP3 and IL-1p both in SNpc and cortex of SNCAA53T-tg mice (Fig.3A-D). Furthermore, the increased
protein levels of NLRP3, ASC, cleaved CASP1, and cleaved IL-1B in SNCA*3T-tg mice (Fig.3 E-G) and BV2-
A53T cells were abolished after SB203580 treatment as detected by Western blotting(Fig.S2 B, C) . Also,
we have detected the Caspasel activity as well as mature IL-1 using ELISA in the tissue homogenates
and results revealed that SB203580 can decrease the levels of caspasel activity and mature IL1B in
SNCAA53Ttg mice (Fig.S2 D, E). Of note, SB203580 did not affect the transcription of SNCA mRNA (Fig.S2
F). Together, these data suggested that MAPK14 inhibitor SB203580 reduced neuroinflammation caused
by SNCA accumulation.

3. SB203580 induces NLRP3 degradation via chaperone-mediated autophagy

The activation of NLRP3 inflammasome in cells is tightly regulated. Excessive activation of the NLRP3
inflammasome is involved in the pathological process of various diseases including PD. To test whether
NLRP3 is degraded by CMA, the interaction between NLRP3 and LAMP2A was examined by
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immunoprecipitation in brain tissues. The results showed that LAMP2A interacts with NLRP3 in vivo
(Fig.4 A). Moreover, we also found that SB203580 enhanced the NLRP3/LAMP2A and NLRP3/ HSPAS
interaction in BV2 cells (Fig.4 B, C).

In CMA, the substrate usually contains a KFERQ-like pentapeptide consensus sequence that is recognized
by HSPA8 (HSC70). Inspection of the amino acid sequence of mouse NLRP3, two KFERQ-like motifs,
795QKLVE799 and 989EVLKQ993, were revealed (Fig.S3 A). To determine whether NLRP3 is a bona fide
substrate for CMA, the first two amino acids of the mouse NLRP3 KFERQ-like sequence were mutated to
alanine (NLRP3AA). The result showed that mutation of the KFERQ-like sequence of NLRP3 abolished its
interaction with HSPA8 (Fig.4 D, E).

To further assess whether CMA is involved in the regulation of NLRP3, we treated BV2 cells with serum
deprivation or AR7 (10 uM, 24 h) or QX77 (10 uM, 24 h), the latter two chemicals are well-known CMA
agonists. The results showed that both serum deprivation and CMA agonists (AR7, QX77) increased the
levels of LAMP2A and reduced the levels of NLRP3 (Fig.4 F-l). Moreover, the level of LAMP2A in the SNpc
of mice was analyzed. Treatment with MAPK14 inhibitor SB203580 elevated the level of LAMP2A, a key
receptor for CMA (Fig.4 J, K).

4. SB203580 activates TFEB-mediated autophagy

Our data in Figure 2 and 3 demonstrate that MAPK14 mediates the NLRP3 inflammasome activation in
BV2 cells and in SNCAA%3T-tg mice, as evidenced by increased levels of NLRP3, cleaved CASP1, and IL-1.
Furthermore, in Figure 4, we showed that MAPK14 regulates NLRP3 turn over through CMA. All these
prompt us to examine the role of MAPK14 in all over autophagy regulation, which may subsequently

contribute to the NLRP3 inflammasome activation'®. TFEB is a master protein for lysosomal biogenesis.

In SNpc sections from SNCAA%3T-tg mice, the total levels of TFEB and LAMP1 were decreased, while the

SQSTM1/p62 level was increased (Fig.5 A, B). To determine whether SNCA aggregation affects the TFEB
nuclear translocation, subcellular localization of TFEB was examined by sub-cellular fractionation. The

result showed that the nuclear TFEB level decreased in SNpc sections of SNCA*%3T-tg mice (Fig.S4 A, B).

In order to examine whether MAPK14 activation is involved in TFEB-mediated autophagy in the PD model,
we treated SNCA-A53T overexpressing BV2 cells with MAPK14 inhibitor SB203580 (10 uM, 24 h). The
results showed that MAPK14 inhibitor SB203580 significantly elevates TFEB-mediated autophagy, as
evidenced by the increased LAMP1, MAP1LC3/LC3 and the decrease of SQSTM1 (Fig.5 C, D).
Furthermore, both Western blotting and immunofluorescence revealed that SB203580 prompted TFEB
nuclear translocation from the cytoplasm (Fig.5 E-H). Meanwhile, SB203580 enhanced the

biogenesis of lysosomes (Fig. S4 C, D). Besides, SB203580 also increased the level of TFEB in SNpc of
mice as detected by IHC (Fig.5 I, J). All these data suggested that SB203580 promotes TFEB-mediated
autophagy.

5. MAPK14 interacts with and phosphorylates TFEB at serine 211
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Next, we aimed to elucidate the mechanism by which MAPK14 regulates TFEB-mediated autophagy. To
evaluate whether TFEB could be a substrate of MAPK14, we first detected the interaction between
MAPK14 and TFEB by co-immunoprecipitation. As expected, immunoprecipitation analysis showed that
MAPK14 interacted with TFEB both in BV2 cells and mice brain (Fig.6 A-E). Of note, SB203580 reduced
the MAPK14/TFEB interaction that enhanced by SNCA A53T aggregation (Fig.6 B-E).

To identify the regulatory function of MAPK14 on TFEB, we examined the role of MAPK14 on the
interaction between TFEB and14-3-3 proteins. As phosphorylation of TFEB at serine 211 by mTORC1 has
been proved to promote TFEB binding to 14-3-3, we detected the level of TFEB phosphorylation with a
phospho-Ser211 specific antibody. It showed that SB203580 reduced the TFEB phosphorylation at serine
211(Fig.6 F, G). To explore the mechanism by which MAPK14 regulates TFEB's function, we analyzed the
effect of overexpression kinase-dead MAPK14 mutant on TFEB's nuclear translocation. Compared with
MAPK14 WT, kinase-dead MAPK14 overexpression increased the nuclear translocation of TFEB (Fig.6 H,
I) and enhanced the biogenesis of lysosome (Fig.6 J, K). Meanwhile, kinase-dead MAPK14
overexpression declined the levels of NLRP3, ASC, C-CASP1 detected by WB (Fig.6 L, M). To further
confirm the effects from p38alpha-MAPK (MAPK14), we analyzed the effect of MAPK14 siRNA. As figure
S 5 shown, MAPK14 siRNA increased the biogenesis of lysosome (Fig. S 5A-B). Also, MAPK14 siRNA
decreased the levels of NLRP3, C-CASP1 detected by WB. (Fig. S 5 C, D). These results supported that
MAPK14 activation suppresses TFEB function via phosphorylating TFEB at serine 211 and inhibiting
TFEB nuclear translocation.

These finding including the interaction between MAPK14 and TFEB, the inhibitory effects of MAPK14
inhibitor and the activation of NLRP3 inflammasome regulated by autophagy, raise the possibility that
the MAPK14 may curb TFEB to increase NLRP3 inflammasome activation. To test the hypothesis, we
firstly overexpressed TFEB in SNCA-A53T BV2 cells. The results showed that TFEB overexpression
reduced NLRP3 and cleaved CASP1 as detected by Western blotting (Fig. S 6 A, B). To examine whether
MAPK14 activates NLRP3 via regulating TFEB, we compared the effects of SB203580 treatment, TFEB
knockdown, and both SB203580 treatment and TFEB knockdown in SNCA-A53T BV2 cells. Remarkably,
the overactivation of NLRP3 inflammasome and cleaved CASP1 resulted from SNCA-A53T was almost
completely reversed by SB203580, while TFEB knockdown eliminated the effect of SB203580 (Fig. S 6 C,
D). Similarly, the effect of SB203580 in IL-1B, IL-18 were abrogated in SNCA-A53T BV2 cells with TFEB
knockdown (Fig. S 6 E-F). To further test whether the autophagy/lysosome pathway is responsible for
MAPK14 inhibition induced NLRP3 degradation, we treated SNCA-A53T BV2 cells with
autophagy/lysosome inhibitor CQ (10 pM, 4 h). The results showed that autophagy/lysosome inhibitor
CQ blocked SB203580-induced NLRP3 degradation (Fig. S 6 G, H). These results supported that MAPK14
activates NLRP3 inflammasome via disturbing TFEB-mediated autophagy.

6. SNCA-induced NLRP3 activation in microglia promoted dopaminergic neuronal loss

To examine whether microglial activation is responsible for the death of dopaminergic neurons, SN4741
cells were treated with conditioned medium form microglia. After appropriate treatments, Cell death in
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SN4741 cells were determined by flow cytometry. As figure 7 A-B shown, conditioned medium form A53T
SNCA microglia caused dopaminergic neuronal loss, while NLRP3 inhibitor MCC950 (10 uM, 12h) and
MAPK14 inhibitor SB203580 can effectively eliminate the effect.

To address whether NLRP3 activation is involved in dopaminergic neuronal loss in vivo, SNCAA%3T-g
mice were fed with NLRP3 inhibitor MCC950 starting at the age of 5 months until the end of 9 months
(Fig.S7 A). Interestingly, MCC950 significantly inhibited the activation of microglia in SNCA%3T-tg mice,
which suggests that NLRP3 plays a key role in the activation of microgliain PD(Fig7 C-D) . Then, we
analyzed the levels of TH in SNpc by WB and IHC. The results showed that MCC950 significantly reduced
the levels of dopaminergic neuronal loss in SNpc of SNCA*33T-tg mice (Fig. 7 E-H). Furthermore, Balance
beam test and pole test showed that MCC950 treatment significantly improved the motor activity in
SNCAA53T-tg mice (Fig. S 7 B, C).

7. SB203580 plays a protective role in SNCAAS3T-tg mice

The above data showed that MAPK14-TFEB pathway is involved in NLRP3 inflammasome activation,
which prompts us to test whether MAPK14 inhibitor SB203580 has a protective role in SNCAA%3T-tg mice.
Wild type and SNCAA53T-tg mice were treated with or without the MAPK14 inhibitor SB203580. Balance
beam test and Pole test showed that SB203580 treatment significantly improved the motor activity in
SNCAA>3T-tg mice (Fig.8 A, B). In addition, abnormal accumulation of SNCA-A53T could be alleviated by
MAPK14 inhibition (Fig.8 C-F). Synapse loss correlates with cognitive impairment in neurodegenerative
diseases including AD and PD'°'®. To examine the protective effect of MAPK14 inhibition, we detected
the presynaptic proteins synapsin-1 (SYN1) in SNCAA%3T-tg mice. The results showed that SB203580
rescues the reduced level of SYN1 in SNCA*%3T-tg mice (Fig.8 G, H). Under TEM, SNCA”%3T-tg mice have
fewer synaptic vesicles, while SB203580 treatment partially restores synaptic vesicle loss (Fig.8 |, J).
Taken together, these data indicated that MAPK14 inhibition provides protection in SNCAA%3T-tg mice.

Discussion

Parkinson Disease (PD) is a common, age-related neurodegenerative disease afflicting more than 2-3%
of people over the 65 and more than 4% of the population by the age of 85. The progressive loss of
dopaminergic neurons in the substantia nigra (SN) eventually results in motor alterations of PD. The
precise mechanism underlying the pathogenesis of PD is not yet been fully elucidated. Previous studies
shown the defect of autophagy-lysosomal pathway (ALP) and neuroinflammation are contributor in the
PD pathophysiology. Accumulating evidence suggests that immune signaling cascades are regulated by
autophagy, while the mechanisms that modulate the inflammasome activation process is still unclear. In
our study, NLRP3 was identified as a novel chaperone-mediated autophagy (CMA) substrate and
activation of CMA promotes NLRP3 degradation and thereby inhibits overproduction of proinflammatory
cytokines in microglia. Moreover, we demonstrated that MAPK14 activation caused by SNCA A53T
inhibits TFEB-mediated CMA, which promotes NLRP3 inflammasome activation. Furthermore, we found
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that both MAPK14 and NLRP3 inhibitor can reduce SNCA-induced microglia activation and dopaminergic
neuronal loss. Therefore, MAPK14-TFEB pathways regulates NLRP3 degradation via CMA in SNCA-
induced microglia activation, which promotes dopaminergic neuronal loss.

The chronic neuroinflammation in PD has been intensively investigated in the past decade, but the
precise origin of the CNS inflammation response remains unclear. Evidences found that
neuroinflammatory response is a key factor in the pathological process of PD'”. Activated microglia and
increased levels of pro-inflammatory factors were identified in postmortem analysis and PD models.
SNCA abnormal aggregation can appears in neuron and microglia, which not only disrupts neuronal
function, also causes activation of microglia that increase phagocytic activity and pro-inflammatory
cytokines production®. It is still controversial whether SNCA can trigger microglia responses and
pathological reaction. Our results not only identified that NLRP3 was a novel CMA substrate, but also
revealed that MAPK14 activation caused by SNCA inhibits TFEB activity that blocked CMA, and then
decreased NLRP3 degradation in microglia. Studies found that SNCA abnormal aggregation activated
microglia, which led to death of dopaminergic neurons in the substantia nigra of the midbrain’®. Toll-like
receptor 2 (TLR2) of microglia was identified as the receptor for secreted SNCA, which transport SNCA
into microglial cytoplasm?29. Overexpression of a-synuclein increases microglial activation in vivo.

However, SNCA internalization still appears when TLR2 is deficient, suggesting a-synuclein uptake relies

on multiple receptor systems?’.

The activation of NLRP3 inflammasome usually requires upregulation of the transcription of NLRP3 and
pro-IL-1B by NF-kB. However, recent studies report that NLRP3 inflammasome can be regulated
independently of transcription. For instance, lys-63-specific deubiquitinase BRCC36 promotes NLRP3
deubiquitination and facilitates NLRP3 activation. Previous in vitro study showed that NLRP3
inflammasome is activated by pathologic SNCA. In this work, we revealed that the degeneration of NLRP3
through CMA is an essential event for the regulation of NLRP3 inflammasome. Our study demonstrated
that MAPK14-TFEB pathway regulates NLRP3 inflammasome in microglia which is involved in the
pathological process of PD. Our data are in line with the previous study demonstrating the protective
effect of MAPK14 inhibition and TFEB in PD models'"?2. Several studies revealed that MAPK14
activation is closely connected to autophagy dysfunction. Mao and colleagues identified that MAPK14
regulates macroautophagy and CMA via phosphorylating ULK and LAMP2A respectively?324. Chen et al.
reported that MAPK14 inhibition promotes mitophagy'’. And recent studies have shown that autophagy
plays a key role in inflammasome regulation?®. Notably, autophagy dysfunction disrupts cell
homeostasis thus induces excessive activation of inflammasomes. This study provided evidence
showing that MAPK14/TFEB-mediated CMA regulating the NLRP3 inflammasome. Although we identified
the role of MAPK14 in activation of NLRP3 inflammasome in SNCAA%3T mice, the mechanism may be
applicable in other neurodegenerative diseases.

Conclusion
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In conclusion, we uncovered a novel NLRP3 degradation pathway by CMA in microglia, which is negative
regulation by MAPK14 through direct phosphorylating TFEB at ser211, inhibits the transcription of
autophagy gene. Moreover, MAPK14 inhibitor SB203580 provided protection via enhancing TFEB-
mediated CMA and reducing NLRP3 inflammasome activation both in vitro and vivo. Given that
neuroinflammatory response is deeply involved in neurodegenerative diseases, the mechanisms we
identified here shed new light on the neurodegenerative process. In addition, the MAPK14-TFEB mediated
CMA may be a potential therapeutic target for PD.

Abbreviations

PD Parkinson’s disease

SNpc substantia nigra pars compacta
SNCA a-synuclein

TFEB Transcription Factor EB

CMA chaperone-mediated autophagy
MAPKs Mitogen-activated protein kinases
TLR toll-like receptor

AB beta-amyloid

CASP1 caspasel

AD Alzheimer's disease

ALP autophagy-lysosomal pathway
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Figure 1

NLRP3 inflammasome is activated in the SNCAA53T-tg mice (A) Immunohistochemistry (IHC)
demonstrating increased NLRP3 protein levels in the cortex and SNpc of 9 months old SNCAA53T-tg
mice. (B) Statistical analysis of the scores of NLRP3 staining between SNCAA53T-tg and wild type mice.
*p<0.05 (Student’s t-test). (C) IHC demonstrating increased IL-1B protein levels in the cortex and SNpc of 9
months old SNCAA53T-tg mice. (D) Statistical analysis of the scores of IL-1B staining between
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SNCAA53T-tg and wild type mice. *p<0.05 (Student’s t-test). (E-G) Cell lysates from the cortex and SNpc
of 9 months old SNCAA53T-tg or wild type mice were immunoblotted. The protein levels of NLRP3, ASC,
cleaved CASP1, IL-1B were statistically analyzed in F and G. Mean + SEM, n = 6, *p < 0.05(Student’s t-
test).
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MAPK14 is activated in both the SNpc and cortex of the SNCAA53T-tg mice (A) IHC demonstrating
increased phosphorylated MAPK14 levels in the cortex and SNpc of 9 months old SNCAA53T-tg mice. (B)
Statistical analysis of the scores of phosphorylated MAPK14 between SNCAA53T-tg and wild type mice.
*p<0.05(Student’s t-test). (C, D and E) Lysates from the cortex and SNpc of mice were immunoblotted
using the indicated antibodies. The protein levels of phosphorylated MAPK14 and SNCA were statistically
analyzed in D and E. Mean + SEM, n = 6, *p < 0.05 (Student's t-test).
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MAPK14 inhibitor SB203580 inhibits the activation of NLRP3 inflammasome (A) IHC demonstrating
SB203580 reduced NLRP3 protein levels in the cortex and SNpc of 9 months old SNCAA53T-tg mice. (B)
Statistical analysis of the scores of NLRP3 staining between SNCAA53T-tg and wild type mice. *p<0.05.
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SNCAA53T-tg mice. (D) Statistical analysis of the scores of IL-1B staining between SNCAA53T-tg and wild
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type mice. *p<0.05. (E, F, G) Cell lysates from the cortex and SNpc of mice were immunoblotted using the
indicated antibodies. The protein levels of NLRP3, ASC, cleaved CASP1 were statistically analyzed in F
and G. *p < 0.05.
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NLRP3 is degraded through CMA (A) Brain lysates from mice were used for IP using anti-NLRP3 or anti-
LAMP2A antibody. (B, C) Cell lysates from BV2 cells were used for IP with NLRP3. SB203580 increased
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the NLRP3/LAMP2A and NLRP3/ HSPAS interaction and showed in C. (D, E) Cell lysates from BV2 cells
were used for IP with anti-Flag antibody. Wild type NLRP3-Flag but not NLRP3AA-Flag was
coimmunoprecipitated with HSPAS. (F, G) Cell lysates from BV2 cells were immunoblotted to determine
the levels of LAMP2A and NLRP3 after starvation. The protein levels of LAMP2A and NLRP3 were
statistically analyzed in I and J. Mean = SEM, n = 3, *p < 0.05. (H, I) Cell lysates from BV2 cells were
immunoblotted to determine the levels of LAMP2A and NLRP3 after treatment with AR7 and QX77. The
protein levels of LAMP2A and NLRP3 were statistically analyzed in L. Mean + SEM, n = 3, *p < 0.05. (J, K)
IHC demonstrating decreased LAMP2A protein levels were rescued by SB203580 in the SNpc of
SNCAA53T-tg mice. Statistical analysis of the scores of LAMP2A staining were shown in N. *p < 0.05.
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SB203580 activates autophagy through TFEB (A, B) Lysates from the SNpc of mice were immunoblotted
using the indicated antibodies. The protein levels of TFEB, LAMP1 and SQSTM1 were statistically
analyzed in B. Mean = SEM, n = 6, *p < 0.05. (C, D) Cell lysates from BV2 cells were immunoblotted to
determine the levels of LAMP1, MAP1LC3, and SQSTM1 and presented in D. Mean = SEM, n = 3, *p <
0.05. (E, F) BV2 cells were subjected to subcellular fractionation to determine nuclear translocation TFEB
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in SNCA A53T BV2 cells and presented in F, *p < 0.05. (G, H) Subcellular localization of TFEB was
analyzed by confocal microscopy and presented in H. *p < 0.05. (I, J) IHC demonstrating decreased TFEB
protein levels were rescued by SB203580 in the SNpc of SNCAA53T-tg mice. Statistical analysis of the
scores of TFEB staining were shown in J. *p<0.05.
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MAPK14 interacts with and phosphorylates TFEB at serine 211 (A) Lysates from mouse brain were used
for IP with anti-TFEB antibody or anti-MAPK14 antibody. (B, C) Cell lysates from BV2 cells were used for
IP with anti-TFEB antibody. SB203580 reduced the TFEB/MAPK14 interaction. *p < 0.05. (D, E) Cell
lysates from BV2 cells were used for IP with anti-MAPK14 antibody. SB203580 reduced the
TFEB/MAPK14 interaction and shown in E. Mean + SEM, n=3. *p < 0.05. (F, G) Cell lysates from BV2 cells
were used for IP with anti-GFP antibody. SB203580 reduced the TFEB-GFP/14-3-3 interaction. Mean +
SEM, n = 3. *p < 0.05 (H, I). Subcellular localization of TFEB was analyzed by confocal microscopy and
shown in I. Mean + SEM, n = 3, *p < 0.05. (J, K) BV2 cells were labeled with Lysosome tracker and
visualized lysosome biogenesis under a microscope and shown in K. Mean + SEM, n = 10, *p < 0.05. (L,
M) Cell lysates from BV2 cells were immunoblotted to determine the levels of NLRP3, ASC and cleaved
CASP1 and shown in M. Mean + SEM, n = 3, *p < 0.05.

Page 24/27



ol

o

@

* CTR-CM "A-CM
4 A+SB-CM -~ A+MCCI50-CM

e we

=

Apopttlsm rate
[+
i
|

A53T +« A53T+MCC950

E e ™
—| 4- 'y
[72]
o
> 3] -
o Q
3 3 24 FYYYS e
=
1 %
> —=
m o T --
w
_|
+
<
9 157 e WT = A53T 4 A53T+MCC950
% *k *k
K] =
E £1.0{ —eee— il
Wt A53T-tg  _A53T-tg+MCC950 © J
1 2 3 1 2 3 1 2 kDa & ==
THln—-—-—‘—-ﬂ‘-ﬁ-——'Hn—. = 55 Zgs-
k]
acTol R N 42 & ——
SNpe 0.0 : ; .
' TH %1-5' e WT ®A53T 4AA53T+MCC950
z
[h] *k ke
=
1.0 —eeeo—
20.5-
WT A53T  A53T+MCC950 2
(=1
Eo-o T T T
Figure 7

SNCA-induced NLRP3 activation in microglia promoted dopaminergic neuronal loss (A, B) Cell apoptosis
of SN 4741 cells was detected by flow cytometry dyeing with Annexin V-FITC/PI, followed by the
treatment with conditioned medium from BV2. Mean + SEM, n = 3, *p < 0.05. (C, D)
Immunohistochemistry (IHC) demonstrating the levels of IBA-1 in the SNpc of 9 months of wide type,
SNCA A53T-tg and SNCA A53T-tg mice treated with MCC950. Statistical analysis of the scores of IBA-1
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staining were shown in D. Mean + SEM, n = 3. *p < 0.05. (E, F) Cell lysates from the SNpc of mice were
immunoblotted using the indicated antibodies and shown in F. Mean + SEM, n = 6, *p < 0.05. (G, H)
Immunohistochemistry (IHC) demonstrating the levels of TH in the SNpc of 9 months of wide type, SNCA
A53T-tg and SNCA A53T-tg mice treated with MCC950. Statistical analysis of the levels of TH staining
were shown in H. Mean + SEM, n = 3. *p < 0.05.
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Figure 8

SB203580 plays a protective role in the SNCAA53T-tg mice (A) Balance beam foot slips were quantified
after PBS or SB203580 injection. (B) Results of Pole test were quantified after PBS or SB203580
injection. (C, D) Cell lysates from the SNpc and cortex of mice were immunoblotted using the SNCA
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antibody and shown in D. Mean + SEM, n = 6, *p < 0.05. (E, F) IHC staining of SNCA in the SNpc and
cortex of mice. Mean = SEM, n = 6, *p < 0.05. (G, H) Immunofluorescence (IF) staining of synapsin-11SYN-
10in the SNpc of mice. Mean + SEM, n = 6, *p < 0.05. (I, J) TEM was used to examine the number of
synapses and shown in J as mean + SEM. n = 3. *p < 0.05. The provided Scale bar in merge image
represent 500 nm.
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