

Accepted Manuscript

Enhancing the Hardness of Potato Slices after Boiling by Combined Treatment with Lactic Acid and Calcium Chloride: Mechanism and Optimization

Jia Liu, Chengrong Wen, Mei Wang, Sijie Wang, Nan Dong, Zunguo Lei, Songyi Lin, Beiwei Zhu

PII: S0308-8146(19)30906-9

DOI: <https://doi.org/10.1016/j.foodchem.2019.05.106>

Reference: FOCH 24832

To appear in: *Food Chemistry*

Received Date: 29 December 2018

Revised Date: 9 May 2019

Accepted Date: 14 May 2019

Please cite this article as: Liu, J., Wen, C., Wang, M., Wang, S., Dong, N., Lei, Z., Lin, S., Zhu, B., Enhancing the Hardness of Potato Slices after Boiling by Combined Treatment with Lactic Acid and Calcium Chloride: Mechanism and Optimization, *Food Chemistry* (2019), doi: <https://doi.org/10.1016/j.foodchem.2019.05.106>

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Enhancing the Hardness of Potato Slices after

2 Boiling by Combined Treatment with Lactic Acid

3 and Calcium Chloride: Mechanism and

4 Optimization

5 Jia Liu^{a,b}, Chengrong Wen^a, Mei Wang^b, Sijie Wang^b, Nan Dong^b,

6 Zunguo Lei^b, Songyi Lin^{a,*}, and Beiwei Zhu^{a,*}

⁷ ^a Dalian Polytechnic University, National Engineering Research Center of
⁸ Seafood, School of Food Science and Technology, Dalian 116034, PR
⁹ China

¹⁰ ^b Guizhou Academy of Agricultural Science, Institute of Food Processing
¹¹ technology, Guiyang 550006, PR China

12 *Corresponding author

13 *Dalian Polytechnic University, National Engineering Research Center of*
14 *Seafood, School of Food Science and Technology, No. 1 Qinggongyuan,*
15 *Ganjingzi District, Dalian 116034, PR China.*

16 Tel.: +86-411 86323262

17 E-mail address: zhubeiwei@163.com; Songyi Lin:
18 linsongyi730@163.com

19 *E-mail for First author : Jia Liu: mcgrady456@163.com*

20 *E-mail for all co-authors: Chengrong Wen:948821706@qq.com ; Mei
21 Wang: 1375898692@qq.com ; Sijie Wang: 394344127@qq.com ; Nan
22 Dong: 460288583@qq.com ; Zunguo Lei 404427917@qq.com.*

24 **Abstract:** Potatoes usually suffer from greatly **decrease of hardness** after
25 boiling, which limits their processing potential in food industry.
26 Moreover, methods for enhancing the hardness of potatoes after boiling
27 are underexplored. In this study, the hardness of potato slices after boiling
28 were increased from 288 g to 2342 g by the combined treatment of lactic
29 acid (LA) and calcium chloride (CC). Through the analysis of the
30 microstructure of the potato cells, the molecular weight distribution and
31 natural sugar ratio of different soluble pectin fractions, and the enzymatic
32 activities (polygalacturonase, PG and pectin methylesterase, PME), the
33 possible mechanism behind the hardness enhancement by LA and CC
34 pretreatment, namely the direct link between pectin and potato structure
35 was revealed. The obtained results confirmed the target spot for
36 enhancing the hardness of potatoes after boiling lay in PG activity and
37 gelation of the pectin, which also could be used to help other plants resist
38 the heat process if pectin existed in their cell wall.

39 **Keywords:** Potato; Pectin; Hardness enhancement; Lactic acid; Calcium
40 chloride

41 **1. Introduction**

42 Potato (*Solanum tuberosum* L.) is a tuber widely consumed
43 throughout the world typically in forms such as mashed potatoes, potato
44 soups and salads, French fries and potato chips (Willard, 1993). Heat
45 processing of potatoes in oil (frying) or water (boiling) before serving on
46 the table is necessary to gelatinize the starch. The different evaporation
47 rates of water at the surface and in the core of potato strips during frying
48 make the outer shell hard and the inner core soft (Bouchon, 2009). While,
49 boiling makes the bulk of the potato soft for preparing mashed potatoes.
50 Thus, the processing of potato was limited because potato easily became
51 soft after heat processing. In China, there is popular snack in Sichuan and
52 Chongqing province called “leng chuan chuan”. This snack is prepared as
53 follows. The vegetables and meat are first boiled and then immersed in a
54 mixture of oil, flavouring and spices. After a few hours, the vegetables
55 and meat absorb the taste compounds from the mixture, and the snack is
56 ready to serve. However, it is strange that the potato slices are crisp after
57 boiling (i.e., their soft mouth feel is lost). The secret of the recipe is
58 soaking the potato slices in the pickle water (fermented juice in pickle) to
59 obtain such a unique texture before boiling. The dominant microbe in
60 pickles is lactic acid bacteria (LAB) (Liu, Han, & Zhou, 2011). Lactic
61 acid (LA) is the main product of LAB metabolism and is responsible for
62 preserving and improving the texture of vegetables (Leroy, & De Vuyst,

63 2004). Therefore, exploring whether LA is involved in improving the
64 texture of potato slices after boiling is reasonable.

65 Normally, significant changes in potato texture occur a few days
66 after slicing because the integrity of plant cells decreases, and the
67 endogenous enzymes can act on the plant cell walls (decomposing the
68 structural components) (Rocculi, et al. 2007). However, the texture
69 changes quickly when potato slices are heated, and these changes can be
70 attributed to two factors: starch and pectin. The gelatinization of starch
71 granules during heating caused earlier researchers to believe that starch
72 swelling was the reason that the potato texture changed more quickly.
73 Jarvis and Shomer proved that the swelling of the cell wall and the starch
74 in the potato cells impacted the texture of the potato (Jarvis, Mackenzie,
75 & Duncan, 1992; Shomer, 1995; Shomer, Vasiliver, & Lindner, 1995).
76 However, subsequent studies proved that there were other factors in
77 addition to starch gelatinization that affected the texture of the potato
78 tissue after boiling. Ng found that heat-induced softening of potato tissues
79 resulted in the solubilization of pectic polysaccharides (Ng, & Waldron,
80 1997). Parker found that the edge-of-face structures could be strongly
81 labelled with JIM5 but not with JIM7 (JIM5 and JIM7 were anti-
82 homogalacturonan monoclonal antibodies, which linked with esterified
83 and non-esterified pectin), indicating that the faces contained
84 polygalacturonic acid with a low ester content (Parker, Parker, Smith, &

85 Waldron, 2001). In addition, the adhesion of the middle lamella to the
86 face of the primary wall differed from the adhesion at the edge of each
87 cell face. Ross found that when potato tubers contained higher levels of
88 total pectin methylesterase (PME) activity, the degree of methylation of
89 pectin in the cell wall was lower and consistently higher values of peak
90 force and work done were observed during the fracture of cooked tuber
91 samples (Ross, et al., 2010). Bordoloi found that the cell walls of
92 parenchyma cells partially degraded upon boiling, resulting in loosening
93 of the cell wall microfibrils (Bordoloi, Kaur, & Singh, 2012). Ormerod
94 considered that the weakening of the potato tissue upon boiling was
95 primarily controlled by thermal degradation of the middle lamella
96 (Ormerod, Ralfs, Jobling, & Gidley, 2002).

97 **Taken together**, most researchers agree that the texture change in
98 potatoes after boiling is caused by changes in the polysaccharides in the
99 cell wall, such as pectin degradation. **Namely, the change of potato**
100 **structure was accompanied with the change of pectin during or after heat**
101 **processing. However, why the change of pectin take place and how pectin**
102 **influence the potato structure during or after heat processing is still a**
103 **mystery. Through the tracking of the change of pectin chemical structure**
104 **and relevant enzyme activity, hardness enhancement after boiling of**
105 **potato slices pre-soaked with LA was elucidated in this study. Besides,**
106 **calcium could affect the fruit quality and preservation based on the**

knowledge that calcium in cell could interact with the uronic acid carboxyl functions in pectin polysaccharide chains to create the so-called pectin 'egg-box' to maintain the cell wall stabilization and integrity (Vicente, Saladié, Rose, & Labavitch, 2007). In order to maximumly enhance the hardness of potato after boiling, calcium chloride (CC) in combination with LA was used in the optimization experiment to achieve the greatest hardness of potato slices after boiling.

2. Materials and methods

2.1 Materials

Potatoes were obtained from a local supplier in Dalian, Liaoning, China (Cultivar: Favorita; Harvest time: 03-Augst-2018; Test time: 08-Augst-2017 to 13-November-2017; Potato storage condition: temperature of 4 °C; Humidity of 90%; Potato size: diameter range of 4-5 cm, and length range of 7-8 cm). The monosaccharide standards including arabinose (Ara), galactose (Gal), fucose (Fuc), xylose (Xyl), rhamnose (Rha) and galacturonic acid (GalA), were purchased from Sigma Chemical Co. (Saint Louis, MO, USA). An enzyme-linked immunosorbent assay (ELISA) kit (MEIMIAN) was purchased from Huyu Biological Technology Co., Ltd. (Shanghai, China). Chromatography-grade acetonitrile and formic acid were also used. All chemicals without further purification were used as received.

128 *2.2 Sample Treatment*

129 Potatoes were obtained from a local supplier in Dalian, Liaoning,
130 China. Potato tubers were firstly washed with tap water. Then, it was
131 peeled and cut into 3-mm-thick slices (potato with a diameter range of 4-
132 5 cm was used, and 3 potato slices separately cut from 3 different
133 potatoes were arranged in 1 group, then followed by different treatment
134 and analysis) for subsequent experiments.

135 *2.2.1. Soaking Treatment (Sila, Smout, Vu, T& Hendrickx, 2004)*

136 The potato slices were soaked in distilled water with 0.5% lactic acid
137 (v/v) and 0.5% calcium chloride (w/v) for 10 h. Then, the samples were
138 washed with distilled water to remove solvent remaining on the surface,
139 packaged in aluminium foil vacuum pouches (20×30 cm, only one slice
140 was put into a pouch and vacuum degree was -70 kPa, as showed in
141 supplementary 1) and stored at 25 °C until analysis (less than 10 min).

142 *2.2.2. Thermal Treatment (Kaur, Singh, Sodhi, & Gujral, 2002)*

143 After soaking treatment, the samples in their aluminium foil vacuum
144 pouches were immersed in boiling water for specified times (1, 3, 5, 7,
145 and 10 min) and then rapidly cooled to room temperature by placing them
146 under running tap water (10-15 °C) for 10 min.

147 *2.3. Texture Measurement*

148 The sample hardness was evaluated by texture profile analysis (TPA)
149 using a TA.XTplus texture analyzer (Stable Micro Systems Co.,

150 Ltd., Godalming, UK) equipped with a P/5 probe (the center portion of
151 potato slice was used for the test and 30%-40% area of the slice was
152 covered by the probe). The test program was set as follows: samples were
153 compressed to 50% (1.5 mm compression) of their original height (3 mm
154 thickness); time between two compressions: 5 s; post-test speed: 1.00
155 mm/s; testing speed: 1.00 mm/s (García-Segovia, Andrés-Bello, &
156 Martínez-Monzó, 2008). The sample hardness, the peak force of the first
157 compression cycle, was automatically calculated from the TPA curves
158 using the software supplied by Texture Technologies Corp.

159 *2.4. Galacturonic Acid (GalA) Determination*

160 The GalA levels in fresh and boiled potatoes were measured
161 spectrophotometrically at 525 nm as reported in a previous study (Kang,
162 Hua, Yang, Chen, & Yang, 2015). (1) Sample preparation: a 5-g sample
163 of potato and 35 mL of anhydrous ethanol (75 °C) were added to a tube,
164 shaken and heated at 85 °C for 10 min. After the treatment, the tube was
165 cooled with tap water. The volume was brought up to 50 mL with 60%
166 ethanol and centrifuged at 8000 rad/min for 15 min 3 times (the
167 supernatant was discarded each time). (2) Sample measurement: the pellet
168 obtained by centrifuging each sample was washed into a 100-mL cylinder
169 using 95 mL of distilled water. NaOH (5 mL, 1 M) was added to the
170 cylinder, and the mixture was incubated for 15 min. Then, the solution
171 was filtered, and the filtrate was ready for testing. Then, 1.0 mL of the

172 filtrate, 0.25 mL of 0.1% carbazole ethanol solution and 5.0 mL of
173 sulfuric acid were added into a 25-mL tube and shaken in a water bath at
174 85 °C for 20 min. Then, the mixture in the tube was cooled with tap water
175 (10-15 °C) and used for spectrophotometric determination within 1.5 h.

176 *2.5. Morphological Observation*

177 The structure of potato slice was observed using scanning electron
178 microscopy (SEM). The determination was performed following the
179 method (Chan, & Tian, 2005). Potato slice subjected to different
180 treatments was firstly lyophilized for 24 h and then broken off for SEM
181 observation. The fractured surface of the potato sample was coated with
182 gold powder to avoid charging under the electron beam. Then, samples
183 were observed using a S-4800 scanning electron microscope (Hitachi,
184 Tokyo, Japan).

185 *2.6. Pectin Extraction and Characteristic Analysis*

186 *Sequential Extraction of Pectic Polysaccharides.* The extraction
187 process was performed following the protocol (Gwanpua, et al., 2014).
188 Potato slices were homogenized by pureeing in a kitchen blender for 5
189 min and were then filtered (300 mesh gauze) to remove the starch
190 granules. Then, the residue was suspended in ethanol (95%) in a potato to
191 ethanol ratio of 1:10 (w/v). To remove the soluble sugars, the suspension
192 was kept at 85 °C for 20 min and then filtered. Finally, the residue was
193 homogenized in acetone (ratio of 1:5, w/v) and stirred for 2 h at 25 °C

194 before a final filtration, followed by freeze drying to obtain the alcohol-
195 insoluble residue (AIR). The water-soluble, chelator-soluble, and
196 Na_2CO_3 -soluble pectin (WSP, CSP and NSP) fractions were then
197 extracted from the AIR. (1) The WSP was extracted by stirring 3 g of
198 AIR in 50 mL of distilled water for 20 h at 4 °C; (2) the CSP was
199 obtained by stirring the residue resulting from the WEP extraction in 50
200 mL of 0.05 M cyclohexane-trans-1,2-diamine tetra-acetic acid (CDTA,
201 pH 6.5) solution at 25 °C for 10 h; (3) the NSP fraction was obtained by
202 stirring the residue resulting from CSP extraction in 50 mL of 0.05 M
203 Na_2CO_3 solution with 0.02 M NaBH_4 at 4 °C for 20 h.

204 *Molecular Weight Distribution.* The molecular weight distributions
205 of the different pectin fractions were investigated by size exclusion
206 chromatography (Shpigelman, Kyomugasho, Christiaens, Van Loey, &
207 Hendrickx, 2014). A Shimadzu LC-20A series HPLC system (Shimadzu
208 Co., Kyoto, Japan) with a reflective index detector (RI -20) was used. The
209 separation was performed on a TSKgel G5000PWXL column (TOSOH,
210 Tokyo, exclusion limits of 4000-800000 Da) with a particle size of 10 μm
211 and a pore size of 100 nm. A 1.0-mL aliquot of the pectin fraction (WSP,
212 CSP, and NSP) was solubilized in 1 mL of eluent and filtered through a
213 0.45 μm filter before being injected into the column. The eluent contained
214 0.1 M 2-(N-morpholino) ethanesulfonic acid buffer (pH 6.5) and 0.1 M
215 NaCl to stabilize the pH and minimize the ionic interactions during the

216 analysis. The flow rate and column temperature were 1.0 mL/min and
217 40 °C, respectively.

218 *2.7. Natural Sugar Ratio Determination*

219 *2.7.1. Pectin hydrolysis (Kurita, Fujiwara, & Yamazaki, 2008)*

220 Pectin samples (2 mg) and 2 M Trifluoroacetic acid (TFA, 2 mL)
221 were added to an ampoule and sealed with an alcohol torch. The pectin
222 was hydrolysed at 110 °C in an oven for 3 h. Then, the digested sample
223 was dried in an N₂ evaporator at 45 °C. The dried sample was dissolved
224 in 200 µL of ultrapure water, and the sample was neutralized with 0.1
225 mol/L NaOH by pH test paper. The final volume of sample was brought
226 up to 1 mL.

227 *2.7.2. Derivatization procedure with PMP (1-phenyl-3-methyl-5-
228 pyrazolone) (Stepan, & Staudacher, 2011)*

229 A 400-µL aliquot of a pectin sample or a standard neutral sugar
230 solution, 50 µL of 0.02 mol·L⁻¹ lactose standard solution, 450 µL of 0.3
231 mol·L⁻¹ NaOH and 450 µL of 0.5 mol·L⁻¹ PMP were mixed in a vortex
232 mixer. Then, the mixture was incubated at 70 °C for 30 min. After
233 cooling to room temperature, the mixture was neutralized by adding 450
234 µL of 0.3 mol·L⁻¹ HCl. The resulting solution was extracted 5 times by
235 adding 1 mL of chloroform. Then, this mixture was vigorously mixed and
236 centrifuged at 3000 g for 5 min (the organic layer was carefully removed).
237 The final aqueous layer was concentrated to dryness and dissolved in 1

238 mL of water to obtain a solution with a standard final volume. The
239 solution was filtered through a 0.45-mm membrane filter and evaluated
240 by HPLC.

241 *2.7.3. High-performance liquid chromatography (Stepan, et al., 2011)*

242 The derivatives were separated on a Thermo BDS C18 column (250
243 × 4.6 mm i.d., 5 µm). The mobile phase consisted of A and B eluents.
244 Eluent A: a mixture of 15% acetonitrile with 0.05 M phosphate buffer
245 solution (KH₂PO₄-NaOH, pH 7.1). Eluent B: a mixture of 40%
246 acetonitrile with 0.05 M phosphate buffer solution (KH₂PO₄-NaOH, pH
247 7.1). Both eluents were filtered through 0.2-mm-pore hydrophilic
248 propylene membrane filters for degassing and sterilization. The gradient
249 conditions were as follows: 0–10 min, 0–10% B; 10–40 min, 10–40% B;
250 40–50 min, 40–0% B; 50–60 min, 0% B. The eluate was monitored at
251 245 nm, the flow rate was 0.7 mL·min⁻¹, the injection volume was 10 µL,
252 and the column was maintained at 35 °C. Through plotting the ratio of the
253 peak areas of the sugar to the internal standard against the sugar
254 concentration, the linearity of each calibration curve (fucose, rhamnose,
255 galactose, galacturonic acid, xylose and arabinose) was confirmed. The
256 concentrations of the unknown samples were calculated by the aid of the
257 standard curves. Standard curves were also prepared for the pectic
258 samples as described in the previous section.

259 *2.8. Cell Wall Degradation Enzyme Extraction and Analysis*

260 Polygalacturonase (PG) or pectin methylesterase (PME) were
261 extracted as the former method (Xie, Yuan, Pan, Wang, Cao, & Jiang,
262 2017) with a slight modification. The sample in the reference method was
263 tomato, thus, an ice cold 80% (v/v) ethanol was used in order to remove
264 the effect of the red colour. However, this pretreatment was removed in
265 this study because the extraction was clean. 5.0 g samples of potato tissue
266 (Reference method: 10 g) that has been subjected to different treatments
267 were homogenized using a cold mortar and pestle in 10 mL (Reference
268 method: 5 mL) of 50 mmol L⁻¹ sodium acetate buffer (pH 5.5, containing
269 1.8 mol L⁻¹ NaCl) and then centrifuged at 7000×g for 30 min
270 (Reference method: 12000×g for 20 min) at 4 °C. The supernatant was
271 collected as the crude enzyme extract and stored in a refrigerator at 4 °C
272 until analysis. The PG and PME activities were measured using an
273 enzyme-linked immunosorbent assay (ELISA, MEIMIAN, Huyu
274 Biological Technology Co., Ltd., Shanghai, China) as follows:

275 (1) A 40-μL aliquot of diluted sample (diluted with phosphate-
276 buffered saline (PBS) containing 5% bovine serum albumin) was added
277 to coat the microtiter plate, and then 10 μL of enzyme extract was added.
278 The plate was incubated for 30 min at 37 °C after being sealed with a
279 closure plate membrane.

280 (2) After a certain period (30 min), the closure plate membrane was
281 removed from the plate. The liquid inside the plate was discarded, and the

282 plate was air dried and then washed with buffer (PBS containing 20 ppm
283 **Tween 20**) (holding for 30 s, then draining). This washing procedure was
284 repeated five times, and after the final wash, the plate was patted dry.

285 (3) HRP-conjugate reagent (50 μ L) was added to each well (except
286 the blank well), and then the plates were incubated for 30 min at 37 °C.
287 After incubation the plates were washed five times with PBS containing
288 20 ppm Twain 20 (holding for 30 s, then draining), and after the final
289 wash, the plates were patted dry.

290 (4) Chromogen solution A (50 μ L, containing sodium acetate, citric
291 acid and 30% hydrogen peroxide) and chromogen solution B (50 μ L,
292 containing EDTA-Na, citric acid, glycerol and tetramethyl benzidine)
293 were added to each well in turn, and the colour was allowed to develop
294 for 10 min at 37 °C (protected from light). The reaction was stopped by
295 adding 50 μ L of stop solution (1.0 mol L⁻¹ sulfuric acid) at which point
296 the colour immediately changed from blue to yellow.

297 (5) The absorbance of each sample was recorded at 450 nm within
298 15 min, and the enzyme activity is reported as U g⁻¹. A calibration curve
299 was prepared by plotting the absorbance against the concentration of a
300 PG or PME standard.

301 **2.9. Optimization of the Pretreatment Procedure**

302 Response surface methodology (RSM, three-level, three-variable)
303 based on the Box-Behnken design (Bezerra, Santelli, Oliveira, Villar, &

304 Escaleira, 2008) was used to observe the influence of the concentrations
 305 of LA and CC and the soaking time on the hardness of the potato slices.
 306 The hardness of the potato slices was chosen as the dependent variable
 307 response, and the three independent variables were the concentration of
 308 LA (X_1), concentration of CC (X_2), and soaking time (X_3). The factorial
 309 design consisted of 5 central and 12 factorial points. The coded and
 310 uncoded independent variables was listed in Table 1, and all the trials in
 311 this series were performed at least in triplicate. Software named Design-
 312 Expert (STAT-EASE Inc., Minneapolis, MN, USA version 7.0) was
 313 applied to evaluate the experimental design and for statistical analysis.
 314 The following second-order polynomial equation was applied to show the
 315 predicted responses (hardness of the potato slices) as a function of the
 316 independent variables.

$$317 Y_i = a_0 + a_1X_1 + a_2X_2 + a_3X_3 + a_{12}X_1X_2 + a_{13}X_1X_3 + a_{23}X_2X_3 + a_{11}X_1^2 + a_{22}X_2^2 \\ 318 + a_{33}X_3^2$$

319 where X_i represents the independent variables, a_0 is a constant, and a_i ,
 320 a_{ii} , and a_{ij} are the linear, quadratic, and interactive coefficients,
 321 respectively.

322 *2.10. Statistical Analysis*

323 All measurements in this study were performed in triplicate. Tukey's
 324 HSD test was used to compare the means. The data were subjected to
 325 analysis of variance (ANOVA), and differences among the tested samples

326 were considered significant at $p<0.05$. All computations and analyses
327 were using SPSS19.0.

328 **3. Results and discussion**

329 *3.1. Texture Characteristics and Galacturonic Acid (GalA) Contents of*
330 *Potato Slices Following Different Treatments*

331 The potato samples had the highest hardness (2828 g) when freshly
332 sliced, and the hardness decreased upon soaking in distilled water (DW)
333 for 10 h, as shown in Fig. 1. As the boiling time increased from 3 to 10
334 min, the hardness of the potato slices decreased from 1999 g to 288 g.

335 Potato slices soaked in LA (725 g) and CC (1042 g) for 10 h showed a
336 higher hardness values after heating for 10 min. Negatively charged
337 galacturonic acid residues in pectin could interact through ionic bonds in
338 the presence of Ca^{2+} and form a calcium-pectate structure to improve the
339 strength of the cell walls. However, why the hardness of the potato slices
340 was improved after soaking in LA remains unclear. **The variation in the**

341 **GalA contents of the potato slices was opposite with that of the hardness**
342 **values during the same treatment procedures.** Freshly sliced potato and

343 slices soaked in DW for 10 h had lower GalA contents than samples
344 subjected to other treatments. With increasing heating time, the GalA
345 content in the potato slices increased from 21.67 to 36.33 g/kg. This
346 change may be due to the increase in the solubility and diffusivity of
347 pectin after thermal treatment (Rico, Martin-Diana, Frias, Barat,

348 JHenehan, & Barry-Ryan, 2007). Potato slices soaked in LA and CC and
349 then boiled for 10 min had GalA contents similar to those of potato slices
350 soaked in DW for 10 h and then boiled for 3 min. The primary wall
351 contributes to the wall structural integrity and cell adhesion in plants
352 (Somerville, et al., 2004). Thus, the loss of pectin from the plant primary
353 cell walls and the middle lamellae caused a decrease in the potato
354 hardness. However, the LA and CC were likely to serve as protectors,
355 preventing the loss of pectin from the cell wall.

356 *3.2. Scanning Electron Microscopy (SEM) Analysis of Potato Slices*
357 *Following Different Treatments*

358 In the fresh and unheated potato slices, the cell walls were linked
359 together, and the starch granules were scattered throughout the interior of
360 the cells (Fig. 2 a and b). The starch granules in the potato samples
361 deformed and aggregated into one mass filling the whole interior of the
362 cell after heating for 3-10 min (Fig. 2 c, d, and e). An obvious
363 intercellular separation was observed in potato slices after heating for 10
364 min due to the thermal breakdown of the pectin in the middle lamella and
365 the cell wall, which decreased cell integrity (Parker, et al., 2001). The
366 pectin is responsible for joining the face of the middle lamella to the face
367 of the primary walls (Fuentes, Vázquez-Gutiérrez, Pérez-Gago, Vonasek,
368 Nitin, & Barrett, 2014). Interestingly, this phenomenon (intercellular
369 separation) did not occur in the potato slices that were soaked in LA (Fig.

370 2 f) and CC (Fig. 2 h) and then heated for 10 min. However, there was a
371 subtle difference between the two treatments upon close inspection of the
372 surface of the cells. The surfaces of the potato cells (Fig. 2 f) appeared to
373 be coated with a layer of a colloidal substance that bound these cells
374 together. The same phenomenon was observed in potato slices pre-soaked
375 in 0.8% acetic acid and then heated for 30 min (Zhao, Shehzad, Yan, Li,
376 & Wang, 2017). Pectin with a high degree of methoxylation can form a
377 gel under acidic conditions. Thus, the acidic conditions during pre-
378 soaking in LA may promote gelation of the pectin, and the gel could then
379 act as an adhesive to firmly bind the potato cells together. However, the
380 cell surfaces shown in Fig. 2 h appeared to be strongly fixed. From the
381 picture (Fig. 2 f and h), it seemed that the mechanisms by which pre-
382 soaking in LA and CC improved potato hardness were different. However,
383 we did find some more interesting result (200 X) from the SEM image
384 from potato treated with LA after 10 min boiling, which was recorded in
385 Fig. 2 (g). Firstly, the cell structure was very complete as we can see from
386 the image; Secondly, the gelatinized starch (the cell wall was taken off
387 and leaving porous substance in the cell) was trapped in the potato cell,
388 which again proved that the potato cell was complete after 10 min boiling.

389 *3.3. Molecular Weight (MW) Profiles of Soluble Pectin Polysaccharides
390 from Potato Slices Following Different Treatments*

391 SEM images showed an obvious intercellular separation in the
392 potato slices after boiling for 10 min, and this observation directly proved
393 that the binding of the middle lamella to adjacent cells was interrupted
394 (experimental condition: potato slice soaked in distilled water for 10 h
395 with 10 min heat treatment). The pectin matrix is the main component of
396 the middle lamella (Knox, 1992), and it prevents the aggregation and
397 collapse of the internal structure of the cell wall (experimental condition:
398 potato slice soaked in 5 g/L lactic acid for 10 h with 10 min heat
399 treatment). Thus, changes in the pectin polysaccharides during heating
400 were determined by exclusion chromatography. The pectin fractions,
401 including (1) the water-soluble (water-soluble pectin, WSP), (2)
402 Cyclohexane-diamine-tetra acetic acid (CDTA)-soluble (CDTA-soluble
403 pectin, CSP) and (3) Na_2CO_3 -soluble (Na_2CO_3 -soluble pectin, NSP)
404 fractions, extracted from the cell walls of the potato slices were likely to
405 be loosely, ionically and covalently linked to hemicellulose and cellulose,
406 respectively, in the cell wall structure. The changes in these pectin
407 fractions in the potato slices during the heat treatments are shown in Fig.
408 3. For the WSP fraction of the fresh potato slices (WSP, A), a major peak
409 was observed at the beginning of the profile at 7.5 min followed by two
410 peaks for lower M_w pectins between 10-11 min. The main peak gradually
411 separated into two peaks (at 7.5 min and 9.5 min) after boiling for 3-10
412 min (WSP, B-E). The profile of the WSP fraction of potato slices soaked

413 in 0.5% LA for 10 h was significantly different, and it contained a new
414 peak (7.1 min) after 10 min of boiling. The M_w of the WSP fraction of
415 potato slices (G) treated with 0.5% CC for 10 h seemed to be intermediate
416 between that of the WSP fraction of potato slices (B) boiled for 3 min and
417 that of the WSP fraction of potato slices (C) boiled for 5 min. The
418 intensity of the molecular weight profiles of the CSP fraction was much
419 higher than those of the WSP and NSP fractions. Thus, no changes were
420 observed among these samples (CSP-1, A-G). However, the changes in
421 the M_w of the CSP fraction after different treatments were observed when
422 the signal intensities were adjusted to levels similar to those of WSP and
423 NSP (after the adjustment of signal intensities, the CSP fraction was
424 summarized as CSP-2, A-G). The M_w of CSP-2 in potato slices decreased
425 (the peak shifted from 8.9 min to 10 min) after boiling. The CSP-2
426 fraction of potato slices treated with 0.5% LA for 10 h showed only one
427 main peak at 7.1 min. The M_w of CSP-2 (G) of potato slices treated with
428 0.5% CC for 10 h resembled that of CSP-2 (C) of potato slices boiled for
429 3 min. The profile of the NSP fraction of fresh potato slices had two
430 peaks at 6.9 min and 10.8 min. As the treatment time increased, a broad
431 peak at approximately 8.7 min appeared. The profile of the NSP fraction
432 of potato slices soaked in LA for 10 min showed only one peak at 7.1 min,
433 and the tail peak at 10.8 min had disappeared. The M_w of the NSP (G)
434 fraction of potato slices treated with 0.5% CC for 10 h resembled that of

435 the NSP (D) fraction of potato slices boiled for 5 min. The WSP and
436 CSP-2 fractions of potato slices treated with LA showed the same M_w
437 peak at 7.1 min, which was completely different from the peaks of other
438 samples. This result was probably due to the gelation of the pectin, which
439 formed an aggregate with a larger M_w . Unlike the profile of potato slices
440 boiled for 10 min, a broad peak at approximately 8.7 min did not appear
441 in the profile of the NSP fraction of potato slices treated with LA. It
442 seemed that these pectin fractions were also involved in gelation. The M_w
443 distribution of the potato slices soaked in CC (and heated for 10 min) was
444 quite similar to the M_w distribution of the potato slices thermally treated
445 for 3-5 min, which was likely a result of a delay in the changes caused by
446 heat treatment. Upon thermal treatment, the pectin in CC-treated common
447 bean consistently showed a higher M_w than that in beans treated with
448 demineralized water (Njoroge, et al., 2016). The high M_w pectins in both
449 the water-soluble and chelating agent-soluble fractions were solubilized
450 and extensively depolymerized into pectins with lower M_w distributions
451 (Broxterman, Picouet, & Schols, 2017).

452 *3.4. Sugar Profile of Soluble Pectin Polysaccharides from Potato Slice
453 Following Different Treatments.*

454 The extractable pectic polysaccharides in fresh and cooked potatoes
455 are composed mainly of GalA (701.42 and 1077.68 mg/g) with moderate
456 amounts of Gal (41.2 and 57.75 mg/g), Fuc (25.02 and 26.34 mg/g) and

457 Rha (17.48 and 19.27 mg/g) and minor amounts of Ara (5.57 and 12.6
458 mg/g) and Xyl (6.82 and 9.05 mg/g). Heating processes were associated
459 with decreases in the textural characteristics of potato slices as well as
460 homogalacturonan depolymerization (the contents of GalA in WSP were
461 significantly increased by heating) and loss of neutral sugar side-chains in
462 rhamnogalacturonan I and rhamnogalacturonan II (the contents of Ara,
463 Gal, Fuc, Xyl, and Rha in WSP were significantly increased by heating).
464 The increase in the contents of GalA and other neutral sugars in the CSP
465 fraction of potato slices after heat treatment followed the same trend that
466 was seen in the sugar profiles in WSP. However, heat treatment
467 decreased the sugar content in the NSP fraction. The CDTA- and
468 Na₂CO₃-extractable fractions were the ionically and covalently bound
469 soluble fractions of pectin, respectively. The CDTA fraction comes from
470 the middle lamella (with a lower neutral sugar content than the Na₂CO₃
471 fraction from fresh potato slices), while the Na₂CO₃ fraction is released
472 from the primary cell wall. Table 2 shows that 82% of the Ara and 93%
473 of the Rha were in the NSP fraction, which implied that
474 rhamnogalacturonan (RG) played an important role in the construction of
475 the cell wall structure. GalA was the main component in the CSP fraction,
476 which implied that homogalacturonan (HG) was responsible for
477 connecting adjacent cells. The increase in GalA and neutral sugar
478 contents in the WSP and CSP fractions after heat treatment may be due to

479 the NSP fraction, which became less tightly bound to the extracellular
480 matrix during the heating process. Compared with potato slices boiled for
481 10 min without treatment, LA and CC treatment decreased the dissolution
482 of GalA and other neutral sugars (lower sugar contents in the WSP and
483 CSP fractions and a higher sugar content in the NSP fraction were
484 observed). This result indicated that the improved textural characteristics
485 of the boiled potato slices after LA and CC treatment were accompanied
486 by maintenance of the GalA and other neutral sugar contents in both the
487 middle lamella and the primary cell wall. The impact of heating on the
488 textural characteristics of carrots has been studied (Sila, Doungla, Smout,
489 Van Loey, & Hendrickx, 2006; Greve, McArdle, Gohlke, & Labavitch,
490 1994), and the concentration of pectin-related neutral sugars (rhamnose,
491 arabinose, and galactose) increased with increasing thermal processing
492 time in accordance with pectin solubilization (Sila, 2006). The CSP and
493 NSP fractions were characterized by lower amounts of neutral sugars than
494 the WSP fraction (Sila, 2006). Nevertheless, the amount of neutral sugars
495 in the NSP fraction also declined with increasing thermal processing time
496 (Sila, 2006). The GalA content in ginseng pectin increased 1.62-fold after
497 steaming at 100 °C and 2.06-fold after steaming at 120 °C (Jiao, Zhang,
498 Wang, Li, Liu, & Liu, 2014).

499 *3.5. Polygalacturonase (PG) and Pectin Methylesterase (PME) Activity*
500 *of Potato Slices Following Different Treatments*

501 The degradation of pectic polymers in the native plant cell wall is
502 mostly due to the activity of pectinases, including PG and PME (Caffall,
503 & Mohnen, 2009). PG can directly hydrolyse HG, while PMEs can
504 hydrolyse the constituent methyl esters, yielding HG with a low degree of
505 methylation that could then be cleaved by PG (Wang, Yeats, Uluisik,
506 Rose, & Seymour, 2018). Thus, the activities of these two kinds of
507 enzymes were determined in the test samples. **The specific activities of**
508 **PG and PME when potato was harvested, were 0.118 ± 0.004 U/g and**
509 **0.472 ± 0.025 U/g.** As shown in Fig. 4, the specific activities of PG (from
510 0.124 to 0.200 U/g) and PME (from 0.498 to 0.707 U/g) significantly
511 increased with increasing thermal treatment time (from 0 to 10 min).
512 Increasing the temperature of the thermal treatment caused a gradual
513 decrease in the enzyme activity in carrot (Jolie, Duvetter, Verlinde,
514 Buggenhout, Loey, & Hendrickx, 2009) and an increase in the
515 inactivation rate constant in banana (Ly-Nguyen, Van Loey, Smout,
516 Verlent, Duvetter, & Hendrickx, 2003). The differences between the
517 results in this study and previous studies on the influence of thermal
518 treatment on enzyme activities in plants may be due to the different
519 experimental systems (packed and unpacked). The aluminium foil
520 vacuum pouches lowered the heat transfer rate from the boiling water to
521 the potato slices. Thus, we could observe slower heating processes than
522 can be achieved in the absence of packaging. With the same thermal

523 treatment time, potato slices soaked in LA for 10 h showed the same
524 PME activity and significantly lower PG activity than untreated potato
525 slices. CC treatment significantly inhibited both PME and PG activity in
526 potato slices. In both orange and *A. aculeatus*, the specific activity of
527 PME also decreased in the presence of CC (Videcoq, Garnier, Robert, &
528 Bonnin, 2011).

529 *3.6. Optimization of the Pretreatment of Potato Slices with LA and CC*

530 The data from 17 experiments (Table 1) related to the hardness of
531 the potato slices were fitted to the following second-order polynomial:
532
$$Y_i = 954.4 + 107.8 X_1 + 91.4 X_2 + 262.9 X_3 + 1.4 X_1 X_2 - 0.9 X_1 X_3 + 0.8 X_2 X_3 -$$

533
$$6.0 - X_1^2 - 7.5 X_2^2 - 30.5 X_3^2.$$

534 The ANOVA results are shown in Supplementary 2. The model
535 coefficient proved the validity of using this method to describe the effect
536 of pretreatment on the hardness of potato slices after boiling. The
537 coefficient of determination R^2 was 0.9234, showing that the obtained
538 model could explain 92.34% of the variability in the response. The model
539 also gave a *p* value for the hardness (0.0642) of the potato slices (higher
540 than 0.05), indicating that the lack-of-fit was not significant relative. The
541 maximum potato slice hardness (2342 ± 202 g) was achieved using the
542 optimal conditions (soaking time = 9.45 h, LA concentration = 7.21 g/L,
543 and CC concentration = 4.27 g/L). The difference ($p > 0.05$) between the
544 experimental and predicted values (2355 g) was not significant.

545 As shown in Supplementary 3, the LA concentration increased to 8
546 g/L, the contact probability between pectin and LA (which promoted the
547 gelation of pectin) and the inhibitory effect on PG (which maintained the
548 cell structure) increased, causing an increase in the hardness of the potato
549 slices. However, a higher LA concentration decreased the hardness of the
550 potato slices by increasing the permeability of the plant cell membrane,
551 which enhanced the mobility of the endogenous enzymes (causing
552 damage to the cell wall). The hardness of the potato slices increased as
553 the CC concentration increased from 1 to 4 g/L. As this concentration
554 increased, the inhibitory effect of CC on PG and PME might also increase.
555 Further increases in the CC concentration decreased the hardness of the
556 potato slices. The combination of LA and CC has a substantial effect on
557 the hardness of the potato slices after boiling. Increasing the pre-soaking
558 time also increases the contact probability between the pectin and the
559 reagents (LA and CC). However, long LA and CC soaking times are
560 detrimental to the hardness of the potato slices.

561 **4. Conclusion**

562 **Based on cell wall chemical and enzymatic analyses**, softening of
563 the potato tissue upon heat treatment may be due to the solubilization of
564 pectin, which is accompanied by an increase in GalA, a decrease in pectin
565 Mw and an increase in PG activity. **The mechanism of enhancing the**
566 **post-boiling hardness** of potato slices by pretreatment with LA and CC

lies in the following factors. (1) Pre-soaking of the potato slice in LA inhibited PG activity, which decreased degradation of the structure of the cell wall. Nevertheless, the acidic environment during pre-soaking in LA may promote gelation of the pectin, and the gel could act as an adhesive agent to firmly bind the potato cells together. (2) Pre-soaking the potato slices in CC significantly increased potato hardness by strongly inhibiting PG activity. Through the combined use of LA and CC, the hardness of boiled potato slices was significantly increased to 2342 g (boiled potato slice without treatment, 288 g). LA and CC were the permitted additives in Food Chemicals Codex, and had been extensively applied in food processing, such as acidifying (LA, concentration of 1%-20%, w/w) of whey (Saffari, & Langrish, 2014), extending the shelf-life (LA, concentration of 1.5%, w/w) of common carp (Noori, Khanzadi, Fazlara, Najafzadehvarzi, & Azizzadeh, 2018), improving antibacterial activity (LA, concentration of 0.08%-0.75%, w/w) of gelatin (Moreira, et al., 2019), retaining freshness (CC, concentration of 1%-4%, w/v) of strawberry (Chen, et al., 2011), improving the structure (CC, concentration of 0.2%-0.5%, w/v) of cheese curd (Moudrá, Pachlová, Černíková, Šopík, & Buňka, 2017). Thus, the technology developed in the current study is safe for human consumption and can be applied in the development of novel potato-based foods, such as non-fried or pickled potato slice (the crispy mouthfeel of potato slice can be retained after

589 gelatinization of starch, while less worry about the excessive intake of
590 lipid, please see supplementary 4).

591 **CONFLICTS OF INTEREST**

592 There are no conflicts to declare.

593 **ACKNOWLEDGMENTS**

594 This research was conducted by financial supported from the
595 National Natural Science Foundation of China (31760463), Construction
596 Project of Innovative Talents Base of Guizhou Provence ([2016] 22) and
597 National Key R&D Program of China (2016YFD0401304).

598 **Reference**

599 Bouchon, P. (2009). Understanding oil absorption during deep-fat frying.
600 *Advances in Food and Nutrition Research*, 57(9), 209-234.

601 Bordoloi, A., Kaur, L., & Singh, J. (2012). Parenchyma cell
602 microstructure and textural characteristics of raw and cooked potatoes.
603 *Food Chemistry*, 133(4), 1092-1100.

604 Broxterman, S. E., Picouet, P., & Schols, H. A. (2017). Acetylated
605 pectins in raw and heat processed carrots. *Carbohydrate Polymers*, 177,
606 58-66.

607 Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira,
608 L. A. (2008). Response surface methodology (RSM) as a tool for
609 optimization in analytical chemistry. *Talanta*, 76(5), 965-977.

610 Caffall, K. H., & Mohnen, D. (2009). The structure, function, and
611 biosynthesis of plant cell wall pectic polysaccharides. *Carbohydrate*
612 *Research*, 344(14), 1879-1900.

613 Chan, Z., & Tian, S. (2005). Interaction of antagonistic yeasts against
614 postharvest pathogens of apple fruit and possible mode of action.
615 *Postharvest Biology and Technology*, 36(2), 215-223.

616 Chen, F., et al. (2011). Quality attributes and cell wall properties of
617 strawberries (*Fragaria ananassa* Duch.) under calcium chloride
618 treatment. *Food Chemistry*, 126(2), 450-459.

619 Fuentes, A., Vázquez-Gutiérrez, J. L., Pérez-Gago, M. B., Vonasek, E.,

620 Nitin, N., & Barrett, D. M. (2014). Application of nondestructive
621 impedance spectroscopy to determination of the effect of temperature on
622 potato microstructure and texture. *Journal of Food Engineering*, 133, 16-
623 22.

624 García-Segovia, P., Andrés-Bello, A., & Martínez-Monzó, J. (2008).
625 Textural properties of potatoes (*Solanum tuberosum* L., cv. *Monalisa*) as
626 affected by different boiling processes. *Journal of Food Engineering*,
627 88(1), 28-35.

628 **Gwanpua, S. G., et al. (2014). Pectin modifications and the role of pectin-**
629 **degrading enzymes during postharvest softening of Jonagold apples.**
630 *Food Chemistry*, 158, 283-291.

631 Greve, L. C., McArdle, R. N., Gohlke, J. R., & Labavitch, J. M. (1994).
632 Impact of heating on carrot firmness: changes in cell wall components.
633 *Journal of Agricultural and Food Chemistry*, 42(12), 2900-2906.

634 Jiao, L., Zhang, X., Wang, M., Li, B., Liu, Z., & Liu, S. (2014). Chemical
635 and antihyperglycemic activity changes of ginseng pectin induced by heat
636 processing. *Carbohydrate Polymers*, 114, 567-573.

637 Jolie, R. P., Duvetter, T., Verlinde, P. H., Van Buggenhout, S., Van Loey,
638 A. M., & Hendrickx, M. E. (2009). Size exclusion chromatography to
639 gain insight into the complex formation of carrot pectin methylesterase
640 and its inhibitor from kiwi fruit as influenced by thermal and high-
641 pressure processing. *Journal of Agricultural and Food Chemistry*, 57(23),

642 11218-11225.

643 Jarvis, M. C., Mackenzie, E., & Duncan, H. J. (1992). The textural
644 analysis of cooked potato. 2. Swelling pressure of starch during
645 gelatinisation. *Potato Research*, 35(1), 93-102.

646 Knox, J. P. (1992). Cell adhesion, cell separation and plant
647 morphogenesis. *The Plant Journal*, 2(2), 137-141.

648 Kurita, O., Fujiwara, T., & Yamazaki, E. (2008). Characterization of the
649 pectin extracted from citrus peel in the presence of citric acid.
650 *Carbohydrate Polymers*, 74(3), 725-730.

651 Kang, J., Hua, X., Yang, R., Chen, Y., & Yang, H. (2015).
652 Characterization of natural low-methoxyl pectin from sunflower head
653 extracted by sodium citrate and purified by ultrafiltration. *Food
654 Chemistry*, 180, 98-105.

655 Kaur, L., Singh, N., Sodhi, N. S., & Gujral, H. S. (2002). Some properties
656 of potatoes and their starches I. Cooking, textural and rheological
657 properties of potatoes. *Food Chemistry*, 79(2), 177-181.

658 Liu, S. N., Han, Y., & Zhou, Z. J. (2011). Lactic acid bacteria in
659 traditional fermented Chinese foods. *Food Research International*, 44(3),
660 643-651.

661 Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional
662 starter cultures for the food fermentation industry. *Trends in Food
663 Science & Technology*, 15(2), 67-78.

664 Ly-Nguyen, B., Van Loey, A. N., Smout, C., Verlent, I., Duvetter, T., &
665 Hendrickx, M. E. (2003). Effect of mild-heat and high-pressure
666 processing on banana pectin methylesterase: a kinetic study. *Journal of*
667 *Agricultural and Food Chemistry*, 51(27), 7974-7979.

668 Moreira, T. F. M., et al. (2019). Hydrogels based on gelatin: Effect of
669 lactic and acetic acids on microstructural modifications, water absorption
670 mechanisms and antibacterial activity. *LWT- Food Science and*
671 *Technology*, 103, 69-77.

672 Moudrá, K., Pachlová, V., Černíková, M., Šopík, T., & Buňka, F. (2017).
673 The combined effects of fat content, calcium chloride, and coagulant
674 concentration on the development of cheese curd structure. *International*
675 *Dairy Journal*, 73, 92-97.

676 Ng, A., & Waldron, K. W. (1997). Effect of steaming on cell wall
677 chemistry of potatoes (*Solanum tuberosum* cv. *Bintje*) in relation to
678 firmness. *Journal of Agricultural and Food Chemistry*, 45(9), 3411-3418.

679 Njoroge, D. M., et al. (2016). Mechanistic insight into common bean
680 pectic polysaccharide changes during storage, soaking and thermal
681 treatment in relation to the hard-to-cook defect. *Food Research*
682 *International*, 81, 39-49.

683 Ormerod, A., Ralfs, J., Jobling, S., & Gidley, M. (2002). The influence of
684 starch swelling on the material properties of cooked potatoes. *Journal of*
685 *Materials Science*, 37(8), 1667-1673.

686 Parker, C. C., Parker, M. L., Smith, A. C., & Waldron, K. W. (2001).

687 Pectin distribution at the surface of potato parenchyma cells in relation to
688 cell-cell adhesion. *Journal of Agricultural and Food Chemistry*, 49(9),
689 4364-4371.

690 Rocculi, P., et al. (2007) Effects of the application of anti-browning
691 substances on the metabolic activity and sugar composition of fresh-cut
692 potatoes. *Postharvest Biology and Technology*, 43(1): 151-157.

693 Ross, H. A., et al. (2010). Potato tuber pectin structure is influenced by
694 pectin methyl esterase activity and impacts on cooked potato texture.
695 *Journal of Experimental Botany*, 62(1), 371-381.

696 Rico, D., Martin-Diana, A. B., Frias, J. M., Barat, J. M., Henehan, G. T.
697 M., & Barry-Ryan, C. (2007). Improvement in texture using calcium
698 lactate and heat-shock treatments for stored ready-to-eat carrots. *Journal
699 of Food Engineering*, 79(4), 1196-1206.

700 Shomer, I. (1995). Swelling behaviour of cell wall and starch in potato
701 (*Solanum tuberosum* L.) tuber cells-I. Starch leakage and structure of
702 single cells. *Carbohydrate Polymers*, 26(1), 47-54.

703 Shomer, I., Vasiliver, R., & Lindner, P. (1995). Swelling behaviour of
704 cell wall and starch in potato (*Solanum tuberosum* L.) tuber cells-II.
705 Permeability and swelling in macerates. *Carbohydrate Polymers*, 26(1),
706 55-59.

707 Shpigelman, A., Kyomugasho, C., Christiaens, S., Van Loey, A. M., &

708 Hendrickx, M. E. (2014). Thermal and high pressure high temperature
709 processes result in distinctly different pectin non-enzymatic conversions.
710 *Food Hydrocolloids*, 39, 251-263.

711 Stepan, H., & Staudacher, E. (2011). Optimization of monosaccharide
712 determination using anthranilic acid and 1-phenyl-3-methyl-5-pyrazolone
713 for gastropod analysis. *Analytical Biochemistry*, 418(1), 24-29.

714 Somerville, et al. (2004). Toward a systems approach to understanding
715 plant cell walls. *Science*, 306(5705), 2206-2211.

716 Sila, D. N., Doungla, E., Smout, C., Van Loey, A., & Hendrickx, M.
717 (2006). Pectin fraction interconversions: insight into understanding
718 texture evolution of thermally processed carrots. *Journal of Agricultural
719 and Food Chemistry*, 54(22), 8471-8479.

720 Sila, D. N., Smout, C., Vu, T. S., & Hendrickx, M. E. (2004). Effects of
721 high-pressure pretreatment and calcium soaking on the texture
722 degradation kinetics of carrots during thermal processing. *Journal of
723 Food Science*, 69(5), E205-E211.

724 Videcoq, P., Garnier, C., Robert, P., & Bonnin, E. (2011). Influence of
725 calcium on pectin methylesterase behaviour in the presence of medium
726 methylated pectins. *Carbohydrate Polymers*, 86(4), 1657-1664.

727 Vicente, A. R., Saladié, M., Rose, J. K. C., & Labavitch, J. M. (2007).
728 The linkage between cell wall metabolism and fruit softening: Looking to
729 the future. *Journal of the Science of Food and Agriculture*, 87(8), 1435-

730 1448.

731 Wang, D., Yeats, T. H., Uluisik, S., Rose, J. K., & Seymour, G. B. (2018).

732 Fruit softening: Revisiting the role of pectin. *Trends in Plant Science*,

733 23(4), 302-310.

734 Willard, M. (1993). Potato processing: past, present and future. *American*

735 *Potato Journal*, 70(5), 405-418.

736 Xie, F., Yuan, S., Pan, H., Wang, R., Cao, J., & Jiang, W. (2017). Effect

737 of yeast mannan treatments on ripening progress and modification of cell

738 wall polysaccharides in tomato fruit. *Food Chemistry*, 218, 509-517.

739 Zhao, W., Shehzad, H., Yan, S., Li, J., & Wang, Q. (2017). Acetic acid

740 pretreatment improves the hardness of cooked potato slices. *Food*

741 *Chemistry*, 228, 204-210.

742 **Figure caption**

743 Fig.1 Hardness and galacturonic acid (GalA) content of potato slice with
744 different treatment. (Fresh sample; soaked in distilled water for 10 h
745 without heat treatment; soaked in distilled water for 10 h with 3 min heat
746 treatment; soaked in distilled water for 10 h with 5 min heat treatment;
747 soaked in distilled water for 10 h with 10 min heat treatment; soaked in 5
748 g/L lactic acid for 10 h with 10 min heat treatment; soaked in 5 g/L
749 calcium chloride for 10 h with 10 min heat treatment; **data columns**
750 **representing hardness and points representing GlaA content bearing**
751 **different capital and lowercase letters are significantly different by**
752 **Tukey's HSD test, $P < 0.05$; 3 samples in each treatment was tested; the**
753 **determination of hardness and galacturonic acid (GalA) content were**
754 **performed in triplicate)**

755

756 Fig.2 SEM images (a-f, and h with a magnification of x100; g with a
757 magnification of x200) of potato slice with or without boiling and
758 treatment. (Fresh sample, a; soaked in distilled water for 10 h without
759 heat treatment, b; soaked in distilled water for 10 h with 3 min heat
760 treatment, c; soaked in distilled water for 10 h with 5 min heat treatment,
761 d; soaked in distilled water for 10 h with 10 min heat treatment, e; soaked
762 in 5 g/L lactic acid for 10 h with 10 min heat treatment, f; soaked in 5 g/L
763 lactic acid for 10 h with 10 min heat treatment, g; soaked in 5 g/L calcium

764 chloride for 10 h with 10 min heat treatment, h)

765 Fig.3 Molecular weight (M_w) profiles of soluble pectin polysaccharides

766 (including water-soluble pectin, WSP; CDTA-soluble pectin, CSP;

767 Na_2CO_3 -soluble pectin, NSP) of potato slice with or without boiling and

768 treatment. (Fresh sample, A; soaked in distilled water for 10 h without

769 heat treatment, B; soaked in distilled water for 10 h with 3 min heat

770 treatment, C; soaked in distilled water for 10 h with 5 min heat treatment,

771 D; soaked in distilled water for 10 h with 10 min heat treatment, E;

772 soaked in 5 g/L lactic acid for 10 h with 10 min heat treatment, F; soaked

773 in 5 g/L calcium chloride for 10 h with 10 min heat treatment, G; 3

774 samples in each treatment was tested; the determination of M_w was

775 performed in triplicate)

776

777 Fig.4 Polygalacturonase (PG) and pectin methylesterase (PME) activity

778 of potato slice with different treatment. (Fresh sample; soaked in distilled

779 water for 10 h without heat treatment; soaked in distilled water for 10 h

780 with 3 min heat treatment; soaked in distilled water for 10 h with 5 min

781 heat treatment; soaked in distilled water for 10 h with 10 min heat

782 treatment; soaked in 5 g/L lactic acid for 10 h with 10 min heat treatment;

783 soaked in 5 g/L calcium chloride for 10 h with 10 min heat treatment;

784 data columns representing PG activity and points representing PME

785 activity content bearing different capital and lowercase letters are

786 significantly different by Tukey's HSD test, $P < 0.05$; 3 samples in each
787 treatment was tested; the determination of PG and PME activity was
788 performed in triplicate)

789 Supplementary 1 Package style of potato slice for thermal treatment.

790 Supplementary 2 Analysis of Variance of the Regression Coefficients of

791 the Fitted Quadratic Equations for the Hardness of potato slice after

792 pretreatment.

793 Supplementary 3 Response surface plots showing the interactive effects

794 of degree of concentration of LA (X_1), concentration of CC (X_2), and

795 soaking time (X_3) on the hardness of boiled potato slice.

796 Supplementary 4 Non-fried potato slice (left is the flavor of spicy, and

797 right is the flavor of pickled pepper)

798

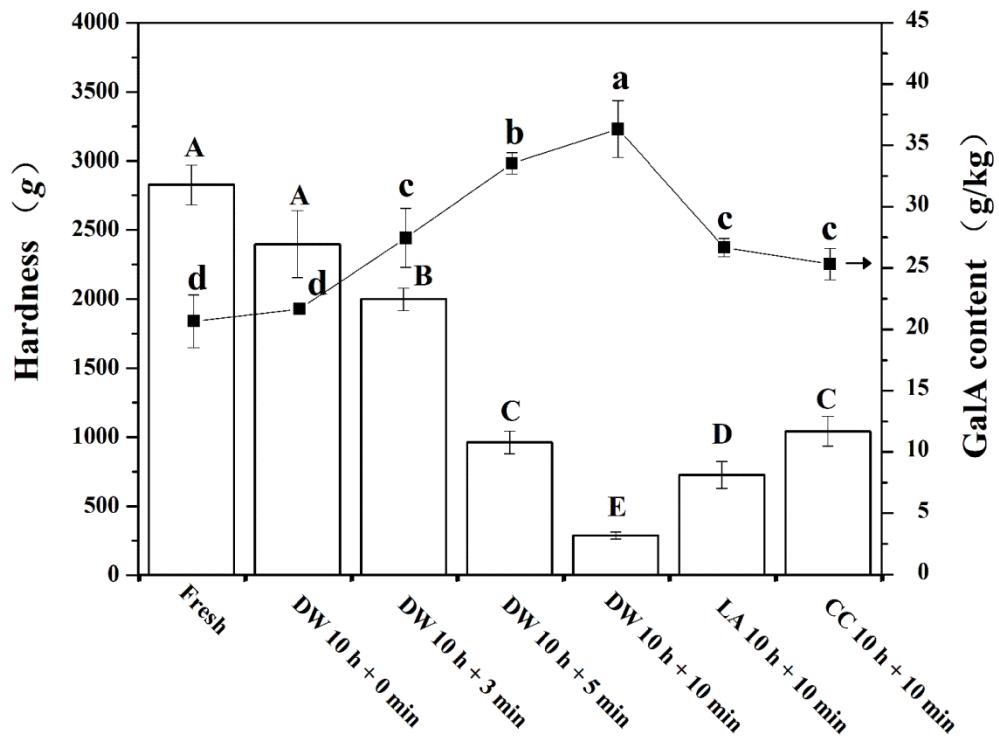
799

800

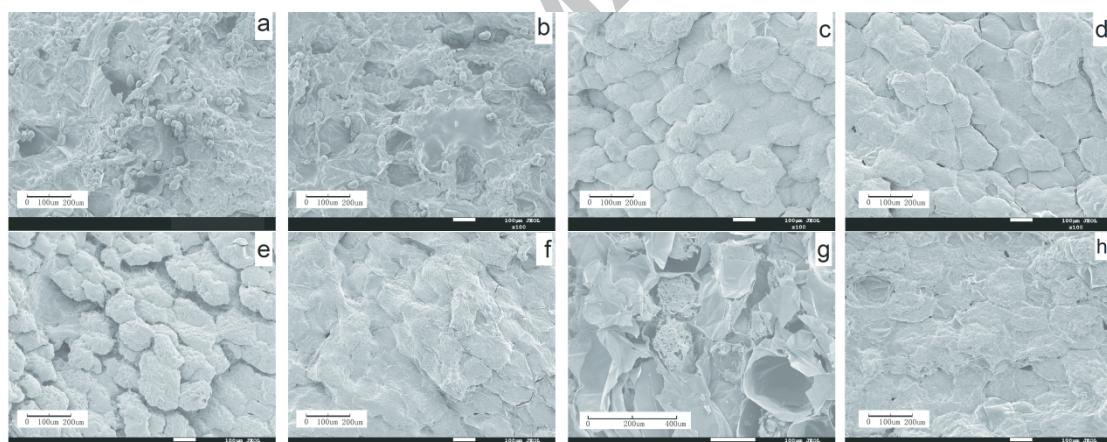
801

803 **Table 1. Box-Behnken Design Matrix, Experimental Values for Three-Level,**
 804 **Three-Factor Response Surface Analysis**

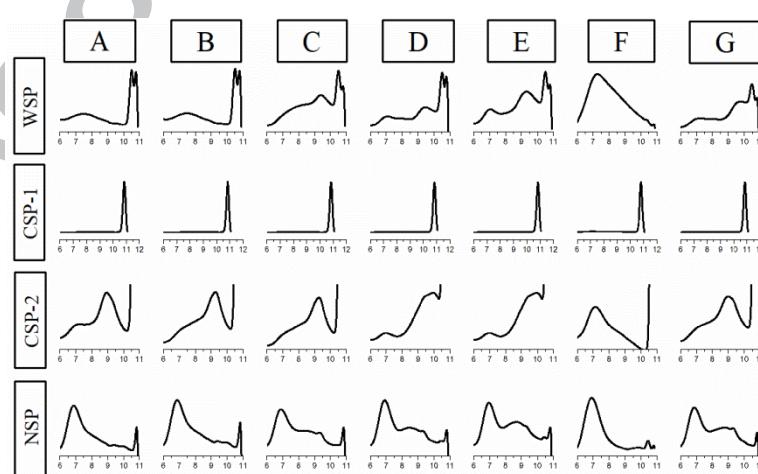
no. ^a	decoded values			experiment values (g) ^{b,c}
	X ₁	X ₂	X ₃	
	soking time (h)	lactic acid concentration (g/L)	cacium chloride concentration (g/L)	
1	5	4	4	2260.1±118.6
2	15	4	4	2049.1±161.9
3	5	12	4	2049.4±140.2
4	15	12	4	1947.6±174.0
5	5	8	1	1865.6±187.4
6	15	8	1	1939.7±84.3
7	5	8	7	1928.8±153.1
8	15	8	7	1952.0±228.6
9	10	4	1	1891.8±294.8
10	10	12	1	1850.3±284.9
11	10	4	7	2036.6±121.5
12	10	12	7	2033.3±145.9
13	10	8	4	2397.9±266.8
14	10	8	4	2398.9±245.8
15	10	8	4	2308.4±268.4
16	10	8	4	2321.5±244.7
17	10	8	4	2307.5±130.0

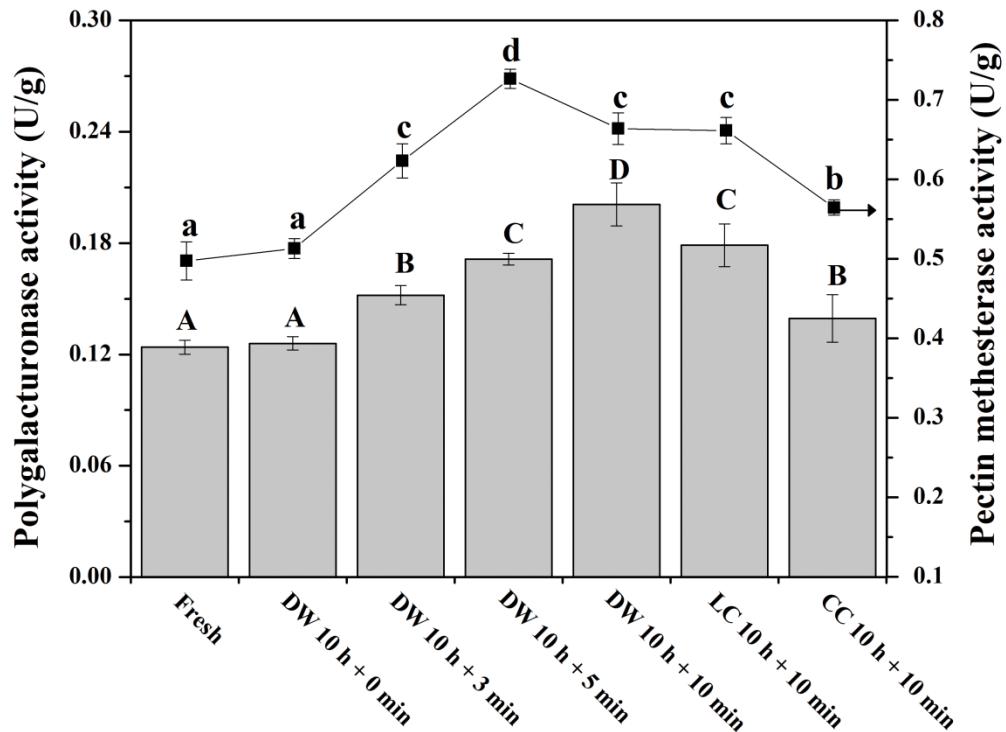

805 ^aExperiments no. were standard order in the Box-Behnken Design. ^bHardness of
 806 potato slice (g).^c 3 samples in each group was tested, and the whole design was
 807 performed in triplicate

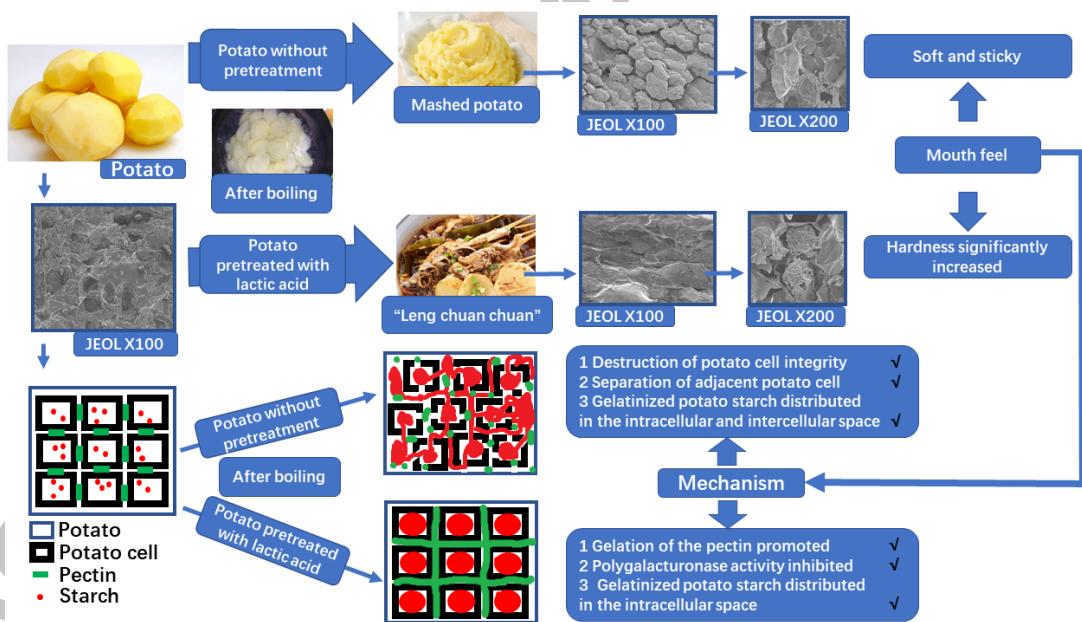
808


809 **Table 2. Sugar profile [arabinose (Ara), galactose (Gal), fucose(Fuc), xylose (Xyl),**
 810 **rhamnose (Rha) and galacturonicacid(GalA), mg/g] of WSP,CSP, and NSP for**
 811 **potato slice freshly prepared or soaked in distilled water (DW), lactic acid (LA)**
 812 **and calcium chloride (CC), and thermally treated with 0-10 min.^a**

Pectin	Treatment	Ara	Gal	Fuc	Xyl	Rha	GalA
WSP	Fresh	0.75±0.134b	4.50±0.40d	7.42±0.06a	0.75±0.03ab	0.50±0.03a	200.89±2.52c
	DW 10 h + 0 min	2.60±0.13fg	2.34±0.93b	8.29±0.05d	1.12±0.61c	3.04±0.08g	280.14±6.50i
	DW 10 h + 3 min	6.33±0.43j	3.41±0.11c	8.35±0.08d	3.35±0.18h	6.18±1.32i	383.42±7.20l
	DW 10 h + 5 min	6.72±0.02k	19.04±0.52f	9.27±0.07e	5.31±0.26j	10.33±0.24n	521.39±5.07n
	DW 10 h + 10 min	8.43±0.04l	28.86±0.86j	9.25±0.08e	5.68±0.12j	16.58±0.98p	596.56±2.04o
	LA 10 h + 10 min	2.12±0.02e	7.41±0.18e	7.88±0.13bc	4.23±0.20i	1.84±0.02e	440.59±3.61m
	CC 10 h + 10 min	4.35±0.13i	7.50±0.05e	8.07±0.03c	3.46±0.07h	7.24±0.59j	160.71±5.52a
CSP	Fresh	0.23±0.01a	0.26±0.05a	7.29±0.25a	0.68±0.09a	0.66±0.11ab	180.51±8.01b
	DW 10 h + 0 min	0.27±0.01a	0.28±0.03a	7.23±0.21a	0.64±0.06a	1.02±0.02c	210.44±6.06cd
	DW 10 h + 3 min	0.39±0.09a	0.37±0.06a	8.23±0.06d	1.55±0.19b	1.27±0.02d	278.18±7.32hi
	DW 10 h + 5 min	0.34±0.01a	2.44±0.18b	9.47±0.25e	1.95±0.23d	1.95±0.27e	244.54±2.25f
	DW 10 h + 10 min	1.72±0.01d	7.43±0.19e	9.61±0.39e	2.56±0.05f	2.24±0.01f	290.61±1.19j
	LA 10 h + 10 min	1.15±0.01c	2.32±0.19b	7.25±0.18a	1.53±0.16b	0.77±0.11b	259.16±2.46g
	CC 10 h + 10 min	0.95±0.06bc	3.23±0.03c	8.22±0.03d	1.70±0.05d	1.93±0.06e	212.06±6.06cd
NSP	Fresh	4.59±0.03i	36.44±0.06l	10.31±0.51f	5.39±0.11j	16.32±2.16p	320.02±12.8k
	DW 10 h + 0 min	4.02±0.38h	39.06±1.97m	10.46±0.81f	4.99±0.06i	13.38±0.42o	261.06±5.12g
	DW 10 h + 3 min	2.83±0.12g	24.14±1.04h	7.47±0.14a	1.63±0.06d	8.82±0.10l	255.48±3.00g
	DW 10 h + 5 min	2.88±0.14g	27.01±2.28hi	7.96±0.04bc	1.13±0.72c	8.36±0.22k	238.87±8.19e
	DW 10 h + 10 min	2.45±0.27f	21.46±1.13g	7.48±0.01a	0.81±0.02d	3.65±0.70h	190.15±1.86b
	LA 10 h + 10 min	3.92±0.16h	33.62±2.22k	8.31±0.02d	2.73±0.32g	10.1±1.65m	222.52±7.26de
	CC 10 h + 10 min	4.43±0.35i	29.97±1.00j	7.49±0.05a	2.17±0.11e	10.85±0.31n	271.72±1.50h


813 ^a3 samples in each treatment was tested, and the determination of sugar profile was performed in
 814 triplicate.


815


816

817

818

820 Declaration of interests

821

822 The authors declare that they have no known competing financial interests or
 823 personal relationships that could have appeared to influence the work reported in this
 824 paper.

825

826 The authors declare the following financial interests/personal relationships which
827 may be considered as potential competing interests:

828

829

830

831

832

833

834 ■ The hardness of boiled potato was significantly increased through
835 the combined use of LA and CC

836 ■ Pre-soaking of the potato slice in LA promoted gelation of the
837 pectin

838 ■ Pre-soaking of the potato slice in LA and CC inhibited PG activity

839

840