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Abstract

Gut microbiota disorder will lead to intestinal damage. This study evaluated the influ-
ence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbi-
ota and intestinal mucosal barrier after long-term administration, and the correlations
between gut microbiota and intestinal mucosal barrier were analysed by Spearman
correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8,
16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric admin-
istration, inflammatory factors (TNF-a, IL-6, IL-1f) and LPS in serum, short chain fatty
acids (SCFAs) in feces were tested by Enzyme-linked immunosorbent assay (ELISA)
and high-performance liquid chromatography (HPLC), respectively. The expression of
tight junction (TJ) protein in colon was measured by western blotting. Furthermore,
the effects of TDEP on gut microbiota community in mice have been investigated
by 16SrDNA high-throughput sequencing. The results showed TDEP significantly in-
creased the levels of inflammatory factors in dose-dependent manners, and decreased
the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice
in TDEP group was significantly different from that of control group. When antibiotics
were added, the diversity of gut microbiota was significantly reduced, and the colon
injury was more serious. Finally, through correlation analysis, we have found nine
key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_
Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium)
that may be related to colon injury caused by TDEP. Taken together, the disturbance
of gut microbiota caused by TDEP may aggravate the colon injury, and its possible
mechanism may be related to the decrease of SCFAs in feces, disrupted the expres-

sion of TJ protein in colon and increasing the contents of inflammatory factors.

Abbreviations: ACET, acetate; BCA, bicinchoninic acid; BUT, butyrate; ELISA, Enzyme-linked immunosorbent assay; EP, Euphorbia Pekinensis; HE, hematoxylin-eosin.; HPLC,
high-performance liquid chromatography; ISC, intestinal stem cells; LPS, lipopolysaccharide; MMP, mitochondrial membrane potential; PROP, propionate; PVDF, polyvinylidene
difluoride; SCFA, short chain fatty acids; SYNPO, synaptopodin; TBS, Tris-buffered saline; TJ, tight junction.
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1 | INTRODUCTION

Euphorbia Pekinensis (EP), the radix of Euphorbia pekinensis Rup,
is a well-known Chinese herb which has been used to treat gon-
orrhea, edema, ascites, migraines, and warts for 1000 years.l’2
Pharmacological studies show that EP also has anti-tumor and anti-
angiogenic activities,>* and the active ingredients are some water-
soluble high polar substances. However, it is worth noting that EP
can cause abdominal pain and diarrhea when used improperly.>¢
Many studies have shown that the toxic components of EP are con-
centrated in the low polar parts, especially diterpenoids, which are
considered to be the main toxic components. In vitro study, casbane
diterpenoids from EP are toxic to many cell lines, such as LO-2,”
IEC-68 and MDCK,’ they can induce cell apoptosis, cellular morpho-
logical change, ROS accumulation, and mitochondrial membrane
potential (MMP) disruption.7'9 In our previous study, we demon-
strated the toxic effects of casbane diterpenoids in vivo, the possi-
ble mechanism is due to the disordered expression of aquaporin in
intestinal tract caused by diterpenoids from EP,> and inflammation
aggravates the disorder of aquaporin expression.'° All these studies
have proved the toxic effects of diterpenoids from EP; however, the
mechanism is still unclear, particularly, the existing research has not
paid attention to gut microbiota, which plays an important role in the
homeostasis of the gut.

Gut microbiota has been found to be related to many diseases,

12-14 15,16 and

such as diabetes,! cancer, chronic kidney disease,
Parkinson's disease,'’ the gut microbiota regulates the disease pro-
cess through some key metabolites, thus, homeostasis of gut mi-
crobiota is very important to maintain the health of the body. The
intestinal mucosal barrier consists of mechanical barrier, chemical
barrier, biological barrier, and immune barrier,*® gut microbiota con-
stitutes the biological barrier of intestinal barrier, and closely related
to the integrity of intestinal immune barrier function, it shapes our
immune responses throughout life. Disturbance of gut microbiota
will lead to the damage of barrier function, loss of the intestinal bar-
rier causes systemic immune activation, resulting in a wide range
of extra intestinal autoimmune and inflammatory diseases.”” Short
chain fatty acids have been found to play an important role in the
relationship between gut microbiota and mucosal barrier function,
they are bacterial metabolites produced in the gastrointestinal tract
that are considered to be beneficial to host cell, research shows that
acetate (ACET), propionate (PROP), or butyrate (BUT) may affect the
intestinal stem cells (ISC) activity, differentiation, barrier function,
and epithelial defense.?® Among these SCFAs, BUT has been the
most widely studied, it shows that butyrate induces actin-binding
protein synaptopodin (SYNPO) expression in epithelial cell lines and
murine colonic enteroids through mechanisms possibly involving

histone deacetylase inhibition, which reveals a direct mechanistic

link between microbiota-derived butyrate and barrier restoration.?*
All these findings suggest that gut microbiota is essential for the in-
tegrity of intestinal mucosal barrier function, and we speculated that
the toxic diterpenes from Euphorbia pekinensis may cause severe in-
testinal mucosal damage by affecting gut microbiota.

In our previous study, we tested the acute toxic of total diter-
penoids extracted from Euphorbia pekinensis (TDEP), and most
studies on intestinal toxicity of Euphorbia pekinensis focus on acute
toxicity; however, in many cases, it needs to be taken for a long
time, and the toxicity under this condition is unclear. In this study,
16SrDNA sequencing was used to detect the difference of gut mi-
crobiota in mice after TDEP administration for 2 weeks, and seek for
different microbiota. Histopathological section of colon and the TJ
protein expression was tested to confirm the damage of intestinal
mucosal barrier. The content of SCFAs in intestinal feces was also
determined, and we further used antibiotic interference to verify the
toxic effects of TDEP and the protective effects of SCFAs. Our find-
ings reveal that gut microbiota disorder caused by TDEP aggravates
intestinal mucosal damage.

2 | MATERIALS AND METHODS

2.1 | Preparation of TDEP

TDEP were extracted and isolated from the radix of EP according to
previous studies.® 6 known diterpenoids accounting for 85.26% of
TDEP. TDEP were dissolved in methanol and detected using HPLC.
Six compounds were found, accounting for 2.44%(Pekinenin G),
5.05%(Yuexiandajisu A), 9.34%((-)-(1S)-15-hydroxy-18-carboxycembr
ene), 6.67%(Pekinenin A), 57.29%(Pekinenin C), and 4.47%(Pekinenin
F) of TDEP, respectively. Pekinenin C accounts for 57.29% of the
total diterpenoids, it may be the main toxic component. The chemical
structures of the 6 known diterpenoids of TDEP are shown in Figure
S2. The HPLC chromatogram of TDEP and Mass spec profile for five
known diterpenoids (1-5) are shown in Figures S3-S5. Cytotoxicity
data of the six diterpenoids against three gastrointestinal cell lines

and fragment ions of them are shown in Tables S1 and S2.

2.2 | Animals and treatment

Mice aged 8 weeks and weighing around 20 g were obtained from
Zhejiang Chinese Medical University Laboratory Animal Research
Center. They were maintained at a controlled temperature (22 + 2°C),
with a 12-h light/dark period, and fed with standard chow for at least
1 week before any manipulations. All animal procedures were carried
out in strict accordance with the Guiding Principles for the Care and
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Use of Laboratory Animals, as adopted by the Committee of Animal
Research at Zhejiang Chinese Medical University. And the study
was conducted in accordance with the Pharmacology Research &
Perspectives policy for experimental and clinical studies. The animal
ethics approval number for the study is SYXK (Zhe) 2018-0012.
Mice were randomly divided into five groups with equal num-
bers (n = 6): Control group, three TDEP groups (4, 8, 16 mg/kg, re-
spectively), in antibiotic group,mice were administrated with TDEP
(16 mg/kg), with 50 pug/ml clindamycin (Sigma), 50 ug/ml metronida-
zole (Sigma), 50 pug/ml penicillin (Sigma), 50 ug/ml neomycin (Sigma)
inin sterile drinking water. The five groups were orally administrated
by syringe-feeding with distilled water (0.3 ml/kg) or TDEP. Two
weeks after administration, fresh feces and colons were collected
and stored in liquid nitrogen, respectively. All samples were finally

stored at -80°C for subsequent treatment.

2.3 | Measurement of serum levels of inflammatory
cytokines and lipopolysaccharide (LPS)

At the end of the treatment, all mice were sacrificed by cardiac
puncture under 10% chloral hydrate (0.7 ml/100 g, i.p.). Blood
was collected in dry tubes and each serum sample were stored at
-80°C. The concentrations of LPS were determined using mouse
LPS enzyme-linked immunosorbent assay (ELISA) kit (MEIMIAN,
202008, Shanghai, China) according to the manufacturer's instruc-
tions. The concentrations were spectrophotometrically quantified
by measuring the absorbance at 450 nm.

Levels of the inflammatory cytokines IL-6, IL-4, and IL-10 were
quantitatively detected using the enzyme-linked immunosorbent
assay (ELISA) kitS (MEIMIAN, MM-0163M2, MM-0040M2, MM-

0132M2) according to the manufacturer's protocols.

2.4 | Western blot analysis of TJ proteins in tissue

To detect the release of TJ proteins on colon, the expression of
claudin-1, occludin, ZO-1 were analyzed by WB. Total protein from
colon was extracted with RIPA buffer, and the protein concentra-
tions were measured via the bicinchoninic acid (BCA) assay. Then
equal amounts of protein mixed with 5x bromophenol blue loading
buffer and boiled for 5 min at 100°C. Proteins were separated by
10% sodium dodecyl sulfate polyacrylamide gel, followed by elec-
troblotting onto polyvinylidene difluoride (PVDF) membrane. To
prevent nonspecific binding, the membranes was blocked in 5%
non-fat milk (prepared in Tris-buffered saline [TBS] containing 0.1%
Tween-20) for 2 h, followed incubated overnight at 4°C with a 1:500
dilution of anti-rabbit claudin-1(abcam, ab15098), and 1:1000 dilu-
tions of anti-rabbit occludin (abcam, ab216327), anti-rabbit ZO-1
(abcam, ab96587), and anti-mouse p-actin (Boster, BM0627). Then
the membrane of $-actin was incubated with a 1:5000 dilution of
horseradish peroxidase-conjugated goat anti-mouse IgG antibody
(Boster, BA1050) for approximately 2 h, the membranes of claudin-1,
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Occludin, and ZO-1 were incubated with a 1:5000 dilution of horse-
radish peroxidase-conjugated goat anti-rabbit IgG antibody (abcam,
BA1054) for approximately 2 h. After washing, protein bands
were visualized using Ultra-sensitive ECL chemiluminescence kit
(Beyotime), and visualized with ChemiDoc™ Touch (Bio-Rad).

2.5 | Histopathological examination

The colon samples (n = 6) were fixed in 10% phosphate-buffered for-
malin, dehydrated and then embedded with paraffin. Subsequently,
the tissues were cutinto 5-pm sections and stained with hematoxylin-
eosin (HE). Representative micrographs of the colon sections were

obtained using a 400x objective under a light microscope.

2.6 | Determination of SCFAs using high
performance liquid chromatography (HPLC)

Briefly, 300 mg feces that was added to 1 ml ultra-pure water and
100 pl concentrated hydrochloric acid was fully homogenized thor-
oughly. Then stand for 20 min, mixed 2 times during the period. The
samples were centrifuged at 4°C (13,861 x g, 10 min), then the su-
pernatant was centrifuged at 4°C (866 x g, 5 min) after extracted by
600 pl ether for 20 min. Took 400 pl organic phase, added 500 pul 1 M
NaOH and continue extraction for 20 min. Water phase was obtained
after centrifuged at 4°C (866 x g, 5 min), and the 450 pl supernatant
added to 300 pl concentrated hydrochloric acid was immediately
filtered through a 0.22 pm microfiber filter. Agilent C18 column
(250 x 4.6 x 5.0 mm) were used to separate SCFAs using an HPLC
(e alliance 2695-2998, Waters) equipped with diode array detectors
and detected at 210 nm. Mobile phase: A (acetonitrile) and B (water
and 0.1% formic acid) (80% B from O to 5 min, 80%-75% B from 5 to
10 min, 75%-65% B from 10 to 25 min, 65%-61% B from 25 to 30 min,
61%-80% B from 30 to 35 min). The flow rate of the mobile phase was
0.8 ml/min, and the column temperature was maintained at 25°C.

2.7 | Gut microbiota analysis

Gut microbiota DNA was extracted from each fecal sample
using the E.Z.N.A.®Stool DNA Kit according to the manufac-
turer's instructions. The quality of DNA in each sample was de-
tected by agarose gel electrophoresis, and quantified by micro
nucleic acid protein analyzer (ThermoFisher). Specific prim-
ers were used to amplify the V3-V4 region of bacterial 16S
rDNA via PCR [341F (5'-CCTACGGGNGGCWGCAG-3') 805R
(5'GACTACHVGGGTATCTAATCC-3')]. The PCR reactions (25 pl)
were conducted using 12.5 ul Phusion Hot start flex 2X Master
Mix, 5 ul specific primers, 50 ng template DNA and ddH,0. The
PCR reactions were performed as follows: 98°C for 40 s, followed
by 35 cycles of 54°C for 30 s, and 72°C for 45 s, with a final ex-
tension of 72°C for 10 min. The PCR products were verified by 2%
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agarose gel electrophoresis, then purified using AMPure XT beads
(Beckman Coulter Genomics), quantified through Qubit (Invitrogen),
and the document was obtained after evaluated on Agilent 2100
Bioanalyzer (Agilent) and Illumina (KapaBiosciences) library quan-
tification kits. The gut microbiota profile was determined using a
MiSeq high-throughput sequencing platform (NovaSeqPE250).

2.8 | Statistical analysis
SPSS version 16.0 for Windows (SPSS) was used for statistical analy-
sis. Numerical data were expressed as mean + SD. The significance

of differences was examined using one-way analysis of variance
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(ANOVA) procedure followed by the Dunnett's test. The correla-
tions between microbiota and host parameters were analyzed by
Spearman's correlation. Results with p < .05 were considered statis-

tically significant.

3 | RESULTS

3.1 | Histological results

Representative HE staining of colon tissues is shown in Figure 1A. The
pathological morphology of control group was normal, no inflamma-
tory response and damage. In the high dose group of TDEP, significant
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FIGURE 1 (A)Effects of different dosage of TDEP and TDEP associated with antibiotics on the histological morphology of mice colon by
HE staining. (a) control group; (b) mice administered with TDEP (4 mg/kg); (c) mice administered with TDEP (8 mg/kg); (d) mice administered
with TDEP (16 mg/kg); (e) mice administered with TDEP (16 mg/kg) associated with antibiotics. (B) Effects of different dosage of TDEP

and TDEP associated with antibiotics on the expression of inflammatory cytokines and LPS in serum. (a) TNF-a; (b) IL-1p; (c) IL-6; (d) LPS.

(C) Effects of different dosage of TDEP and TDEP associated with antibiotics on the expression of TJ proteins in the mice colon. The

results were normalized with $-actin protein level, and all TJ proteins level of the control was taken as 100%. Data are represented as the
mean = SD. *p < .05, **p < .01 versus control group, respectively. n = 6 in each group and each assay was repeated three times
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FIGURE 2 The contents of the SCFAs in the feces. (A) HPLC chromatogram of SCFAs standard and different samples: (a) standard.

(1) acetic acid, (2) propionic acid, (3) i-butyric acid, (4) n-butyric acid, (5) pentatonic acid, (6) hexanoic acid; (b) control group; (c) mice
administered with TDEP (4 mg/kg); (d) mice administered with TDEP (8 mg/kg); (e) mice administered with TDEP (16 mg/kg); (f) mice
administered with TDEP (16 mg/kg) associated with antibiotics. (B) Effects of different dose of TDEP on the contents of the SCFAs. Data are
represented as the mean + SD. *p < .05, **p < .01 versus control group, respectively; *p < .05, #p < .01 versus TDEP (16 mg/kg). n = 6 in each

group and each assay was repeated three times

mucosal damage was observed, the villi were irregular with local epi-
thelial shedding, inflammatory infiltration of large areas of mononu-
clear leukocytes in the mucosa and submucosa, and there was edema
between mucosal and muscular layers in the colon. In the antibiotic
treatment group, mucosal damage was more serious. Inflammatory
infiltration was also observed in the medium dose group, some of the
epithelial cells fell off, and the edema between the colonic mucosa
and muscular layer was alleviated, and the damage of low dose group

was not obvious compared with control group.

3.2 | Effects of TDEP on expression of
inflammatory factors and TJ protein levels

The damage of mucosal barrier function may lead to inflammatory re-
action, in this study, the expression of IL-1p, IL.-6, and TNF-« in serum
was tested by enzyme linked immunosorbent assay (ELISA). The result
shows that TDEP lead to the increase of inflammatory factors in blood
in a dose-dependent manner(p < .05), and the expression of inflamma-
tory factors was even higher than TDEP high dose group in antibiotic
treatment group, content of LPS in serum was also detected, the result
was consistent with the inflammatory factors expression (p < .05).
Occludin, claudin-1, and ZO-1 are important tight junction
proteins, they are critical for the maintenance of intestinal mu-
cosal barrier function. The expressions of these three TJ proteins
in colon were detected, as shown in Figure 1C, after TDEP ad-
ministration, the expression of TJ protein in colon of mice was
significantly decreased, and the expression of TJ protein in the
colon of antibiotic treatment group was lower than that of high

dose group (p < .05).

3.3 | The contents of SCFAs in feces

The contents of SCFAs in mice feces at different doses of TDEP
were tested. As shown in Figure 2, acetic acid, propionic acid, and
butyric acid are the main SCFAs in feces, accounting for about 80%
of SCFAs. In low dose of TDEP(4 mg/kg), there was significant differ-
ence in the contents of acetic acid, i-butyric acid, n-butyric acid, and
hexanoic acid (p < .05). In medium dose group, all the SCFAs were
decreased (p < .05). While in high dose group, all SCFAs were signifi-
cantly decreased (p < .05). Compared with high dose group, acetic
acid, i-butyric acid, and hexanoic acid were significantly decreased
in antibiotic group (p < .05), and n-butyric acid was not detected in
high-dose and antibiotic groups.

3.4 | 16SrDNA sequencing
These sequence data have been submitted to the Sequence Read
Archive(SRA) databases under accession number SUB8556324.

3.5 | Alphaand Beta diversity analysis

Alpha diversity analysis is used to evaluate the species diversity
of different treated groups, which includes the Chaol, Observed
species, Goods_coverage, Shannon, and Simpson indexes. In this
research, Chao 1 index and Goods_coverage index results showed
that species value was significantly different when antibiotics were
used. However, there was no significant difference between control

group and TDEP group. Community diversity was estimated using
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FIGURE 3 Alphaand Beta diversity analysis. (A) Alpha diversity analysis of species distribution: (a) Chao1; (b) Shannon; (c) Goods_
coverage; (d) Simpson. The data showed that there was significant difference between the antibiotic group and the other two groups, but
there was no significant difference between TDEP group and control group. (B) Weighted and unweighted PCoA analysis. The PCoA analysis
showed a clear separation of the TDEP group from the control group and the antibiotic treatment group

the Shannon index and the Simpson index, the results are shown in
Figure 3A b and d, compared with control and TDEP group, Shannon
index of antibiotics-treated group was lower, and Simpson index was
closer to 0, which means there were few species in the antibiotics
treated group, and the values between control and TDEP group
were also not obvious. Therefore, the diversity of control and TDEP
group was not affected, antibiotics-treated group could obviously
affect the diversity.

Beta diversity refers to the species diversity among different
environmental communities. In this research, we used weighted
and unweighted principal coordinates analysis (PCoA) to compare
the community composition differences between different samples.
The results showed that TDEP group changed the gut microbiota
significantly from control group, and antibiotic treatment group
showed an obvious separation of other two groups. These indicated
that there were significant differences in gut microflora among the
three groups (Figure 3B).

3.6 | The microbial community structures at the
phylum and genus levels

From the diversity results, we can see that the species composition
was quite different between three groups. We further selected the
highest abundance from the phylum and genus level to analyze the
species differences among three groups. As illustrated by Figure 4A,
at the phylum level, Bacteroidetes, Firmicutes, Actinobacteria, and
Patescibacteria were the main phyla of control group and TDEP

group, although the species are similar, their composition is differ-
ent. However, antibiotic-treated group was quite different, in this
group, Proteobacteria (70.63%) and Firmicutes (22.96%) became the
main phyla, the abundances of other phyla were lower than that in
other two groups. The abundance of Proteobacteria (3.04%) in TDEP
group was higher than that in control group (1.49%) (p < .05), although
the abundances of Deferribacteres, Firmicutes, Epsilonbacteraeota,
and Tenericutes also increased, there were no significant differ-
ence. At the same time, the abundances of Bacteroidetes (56.23%),
Actinobacteria (0.34%), Cyanobacteria (0.00%) in TDEP group were
lower than that in control group (71.16%, 1.31%, 0.03%) (p < .05). The
abundances of other phyla did not change significantly.

At the Genus level, we selected the top 30 species for assessment,
and the results showed that the distribution of the gut microbiota was
significantly altered among the three groups. Compared with control
group, the relative abundances of Enterobactacter, Alloprevotella,
Alloprevotella, Rikenellaceae_RC9_gut_group, Parabacteroides, and
Enterorhabdus were siganificantly downregulated by TDEP admin-
istration. The relative abundances of Lachnospiraceae_NK4A136_
group, Lachnospiraceae_unclassified, Bilophila, Mucispirillum, and
Ruminiclostridium were increased significantly. At the same time, we
observed that the abundances of antibiotic treatment group were
quite different, Enterobacter and Enterococcus became the main spe-
cies, accounting for 66.26%, but in control group and TDEP group,
the numbers were 0.07% and 0.03%, respectively. Meanwhile, some
bacteria with low abundances in the control group and TDEP group
increased in the antibiotic group, such as Pantoea (17.19%), Klebsiella
(5.50%), and Escherichia-Shigella (2.25%), and many microbiota
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FIGURE 4 Differences of microbial community structures at the phylum and genus levels. (A) Column of microbial at phylum level in each
group; (B) Column of microbial at genus level in each group; (C) Heatmap and the cluster analysis of the top 18 abundance bacterial phyla; (D)
Heatmap and the cluster analysis of the top 30 abundance bacterial genera

species cannot even be detected. In the cluster analysis of the bacte-
rial phyla and genera, it was found that the distributions of these phyla
and genera in the TDEP group were closer to that in the control group

than in antibiotic group.

3.7 | LEfSe analysis in TDEP and antibiotic-
treated group

To define which bacterium might be responsible for colon injury in-
duced by TDEP, linear discriminant analysis (LDA) effect size (LEfSe)
was used to analyze the differences among the three groups from

the phylum level to the genus level, and the magnitudes of effects of
the different species biomarkers were assessed by LDA (Figure S1).
The results showed that gut microbiota differed significantly among
three group, about 59 biomarkers were found (Figure 5). We re-
moved the bacteria with relative abundance less than 0.1% for
further analysis, and 35 bacterial genera were selected. The correla-
tions between the 35 bacterial genera and biochemical parameters
were analyzed by Spearman's correlation analysis, eventually, 9 bac-
teria genera with significant correlation with some biochemical pa-
rameters are shown in Table 1. Notably, in antibiotic-treated group,
some opportunistic pathogens such as Klebsiella were detected, and
this may be one of the reasons why it is more toxic.
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FIGURE 5 Specific biomarkers of TDEP and antibiotic treated group

3.8 | Effects of TDEP on microbial community
functions predicted by PICRUSt.

As shown in Figure 6, seven functional modules were significantly
enriched in TEDP group, such as tetrapyrrole biosynthesis Il (from
glycine), CMP-pseudaminate biosynthesis, pyruvate fermentation
to isobutanol (engineered), L-arginine biosynthesis Il (acetyl cycle),
L-arginine biosynthesis IV (archaebacteria), L-arginine biosynthesis
| (via L-ornithine), and superpathway of UDP-glucose-derived O-
antigen building blocks biosynthesis. Twenty-three functional mod-
ules were depleted. The intervention of TDEP contributed to the

functional difference of gut microbiota.

3.9 | Correlation between the abundances of
different bacterial genera and biochemical parameters

As shown in Table 1, ten bacterial genera with significant changes in
abundance after TDEP administration were selected, and therelation-
ships between them with inflammatory factors, TJ proteins, SCFAs
were assessed. The results showed Barnesiella, Muribaculaceae_
unclassified, Candidatus_Arthromitus and Enterorhabdus were
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negatively correlated with inflammatory factors, while Mucispirillum,
Bilophila, and Ruminiclostridium were positively correlated with
the expression of one or more inflammatory factors. At the same
time, Barnesiella, Alloprevotella, Candidatus_Arthromitus, and
Enterorhabdus were significantly positively correlated with the TJ
proteins expression, such as claudin-1, occludin, and ZO-1, while
Mucispirillum and Ruminiclostridium were significantly negatively
correlated with the expression of TJ proteins. The levels of SCFAs
were positively correlated with Barnesiella, Muribaculaceae_unclas-
sified, Alloprevotella, Candidatus_Arthromitus and Enterorhabdus,
and negatively correlated with Mucispirillum, Bilophila, and

Ruminiclostridium.

4 | DISCUSSION

In our previous study, we have proved the acute toxicity of TDEP,
and possible mechanism is related to the induction of intestinal in-
flammatory response and interference with aquaporins. Previous
studies have confirmed that diterpenes from Euphorbia pekinensis
can induce apoptosis on the intestinal cells. However, there was
few researches paid attention to the long-term toxicity of Euphorbia
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FIGURE 6 Effects of TDEP on microbial community functions predicted by PICRUSt

pekinensis so far. In this research, we designed a two-week oral
administration of TDEP for mice, and the intestinal tissue damage
was identified by pathological section. Different from acute toxicity
test, serious colon tissue injury was observed in middle dose and
high dose groups while there was no obvious injury of colon tissue
in acute toxicity test. From the results of pathological morphology,
goblet cells were completely damaged in the high dose group, and
large amount of immune cells infiltration were observed, which
would produce cytokines and chemokines that further amplifying
local inflammation.

Studies have shown that inflammation is closely related to the
expression of TJ protein, and they are essential for the maintenance
of intestinal barrier function. Pioglitazone ameliorates DSS-induced
colitis and attenuates colitis-associated mechanical hyperalgesia,
with improving integrity of the intestinal mucosal barrier by directly
upregulating tight junction protein ZO-1 through the PPARy-tight
junction protein signaling.?? And CS may reduce the expression of
TNF-a, promote the expressions of TJ proteins such as claudin-1, oc-
cludin, and ZO-1 to maintain the intestinal mucosal barrier function
for attenuating UC in mice.?® According to the above results, this
study further detected the TJ proteins in colon and inflammatory
factors in serum. It has been pointed out that TJ proteins such as
Z0-1, occludin, and claudin-1 are very important to maintain the
function of intestinal mucosal mechanical barrier. In this study, the
results showed that expression of tight junction proteins were de-
creased by TDEP administration in dose-dependent manner, sug-
gesting that intestinal mucosal barrier was seriously damaged, and
harmful substances were more easily to enter the blood. The con-
jecture was verified in further experiments, as shown in Figure 1B,
the level of LPS in serum of high dose group was nearly three times
that of control group. As we all known, LPS is product of Gram-
negative bacteria, which induce inflammatory reaction through

Toll-like receptor, leading to intestinal dysfunction and even other
organ damage.24 We also found that the expression of inflammatory
factors also showed a dose-dependent relationship, all these results
were consistent with the histopathological damage. However, the
mechanism of TDEP induced colon injury remained unclear.

Gut microbiota has been shown to be associated with tight junc-
tion proteins expression and is essential for maintaining intestinal
physicochemical barrier.?® To investigate whether gut microbiota
played a role in TDEP induced intestinal toxicity, antibiotics were
added to interfere with the gut microbiota when TEDP was given to
mice. It was worth noting that the damage of colon tissue was more
obvious when antibiotics were added, the level of inflammatory fac-
torsin serum increased, and the expression of tight junction proteins
was lower. These indicated that when the abundance of some bac-
teria was inhibited by antibiotics, the protective effect of bacteria
on intestinal mucosa was also reduced, which eventually lead to the
aggravation of colon injury.

So far, our study showed that TDEP could lead to the dam-
age of intestinal mucosal barrier, and inhibition of gut microbiota
would aggravate the damage of colon, but the correlation between
them was not clear. Some studies have shown that gut microbiota
can protect intestinal barrier by secreting SCFAs.?%?” SCFAs are
products of gut microbiota and play considerable roles in colonic
health and integrity. SCFAs mainly consistent of acetate, butyrate,
and propionate, which may affect the expression of TJ proteins and
inflammatory factors, and playing an important role in promoting
epithelial barrier function and wound healing.?*?8 Therefore, we
speculated that TDEP may also affect the expression of SCFAs in
feces. We detected the SCFAs by HPLC, and found that the con-
tent of all the SCFAs was decreased by TDEP administration in a
dose-dependent manner. And the decrease of antibiotic group was
more significant, some SCFAs in feces such as n-butyric acid had



WANG ET AL.

not even been detected. Combined with the previous experimen-
tal results, we found that the lower the contents of SCFAs in feces,
the more serious colon tissue damage occurred. These results sug-
gested that SCFAs secreted by gut microbiota might play a role in
TDEP induced colon injury.

To find out the potential microbiota which associated with
biochemical parameters closely related to colon injury, 16SrDNA
high-throughput sequencing technology was used to study the
changes of gut microbiota after TDEP intervention. The results
showed there were gut microbiota disorders in TDEP group.
Although there was no significant change in alpha diversity of gut
microbiota after intragastric administration of TDEP, there were
significant differences in the gut microbiota abundance between
TDEP groups and control group. PCoA analysis showed that the
three groups could be significantly separated. In the species
analysis, we first analyzed the difference of microbiota at phy-
lum level, Proteobacteria was increased, while Bacteroidetes,
Actinobacteria, Cyanobacteria were decreased in TDEP group,
other changes were not significant. However, in antibiotic
group, only Proteobacteria, Firmicutes, Verrucomicrobia, and
Bacteroidetes could be detected, which was consistent with the

t,2% the decrease in gut microbiota biodiversity may be the

repor
cause of the most serious injury in the antibiotic group.

Through species analysis and LEfSe analysis, we had selected 59
bacteria genera that contributed to colon injury. To find the most
valuable bacteria genus, we combined these bacteria genera with
biochemical parameters by Spearman correlation analysis, and the
correlation coefficient and significant difference value of bacteria
genus related to biological parameters were recorded. Finally, we
screened out nine bacteria genera, five decreased bacteria genera
such as Barnesiella, Muribaculaceae_unclassified, Alloprevotella,
Candidatus_Arthromitus and Enterorhabdus were negatively cor-
related with inflammatory factors and positively correlated with T)J
proteins and SCFAs, which meant they had a protective effect on the
colon. Interestingly, they were decreased after TDEP administration,
and among them, Barnesiella, Candidatus_Arthromitus, Alistipes and
Enterorhabdus had the best correlation with biochemical parameters,
and the beneficial effects of these three species on the intestinal
barrier had been confirmed in previous studies. Yang, et al.%° found
that increased abundance of Barnesiella in gut micraobiota might be
closely associated with downregulation of NF-kB and inhibition of
TNF-a activation, which eventually lead to the relief of enteritis symp-
toms in mice with DSS-induced colitis. Furthermore, it was reported
that Barnesiella might be related to the secretion of SCFAs.%! Alistipes
is a SCFAs-producing bacterium, which has protective effects against
some diseases, including liver fibrosis, colitis, cancer immunother-
apy, and cardiovascular disease.®? The role of Enterorhabdus is not
very clear, in a study of the effects of smoking on Crohn's disease,
the relative abundance of the genera Collinsella, Enterorhabdus, and
Gordonibacter in smoking patients with Crohn's disease was reduced
compared with nonsmoking patients.33 Inanother study, GFP-Cr could
significantly increase the relative abundance of Enterorhabdus in di-
abetes mellitus mice.2* These findings suggested that Enterorhabdus
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may play a positive role in maintaining intestinal barrier function.
Candidatus Arthromitus 3> was proved closely related to the intestinal
mucosal immunity of the host, which promoted immune maturation
and enhances host resistance, and it was difficult to recovery after
large doses of antibiotics treatment. All these bacteria genera were
not detected in antibiotic group, which may be one of the reasons for
the strong toxicity of the antibiotic group.

On the other hand, the abundances of Mucispirillum, Bilophila,
Ruminiclostridium increased after TEDP adminstration. Zhang, et al.%®
found that Shen-Ling- Bai-Zhu-San could improve functional dyspep-
sia by reducing functional dyspepsia biomarkers including Prevotella,
Mucispirillum, and Akkermansia. Bilophila wadsworthia, which belong
to the Bilophila genera, had been proved to promote higher inflamma-
tion, intestinal barrier dysfunction and bile acid dysmetabolism, lead-
ing to higher glucose dysmetabolism and hepatic steatosis,” and it had
also been confirmed to be associated with colorectal cancer.®® The
increase of these pathogens is another cause of colon injury caused
by TDEP. What's more, Klebsiella and Escherichia-Shigella were found
in antibiotic group, both of them were pathogenic bacteria, but they
were not detected in other two groups. We speculated that antibiotics
inhibit the original gut microbiota, which made these pathogens colo-
nize more easily and caused serious damage.

Moreover significant different functional profiles between dif-
ferent groups were predicted by PICRUSt. As the results showed,
decrease of glyoxylate cycle and TCA cycle were observed in TDEP
group, the glyoxylate cycle was a variation of the TCA cycle, and they
were the hub for energy metabolism, the decrease of them meant
that the energy metabolism of mice was reduced. Biosynthesis of
ubiquinol 7-10 was also significantly reduced, ubiquinol also called
coenzyme Q, was a well-known antioxidant molecule, the reduction
of them was not conducive to the development of antioxidant de-
fenses in colon. There were also some metadata pathways changed
after TDEP administration. However, whether they are the cause of

TDEP induced colon injury need further study.

5 | CONCLUSIONS

The experiment confirmed for the first time that colon injury induced by
TDEP is associated with disturbance of gut microbiota. Through the de-
termination of inflammatory factors in serum, tight junction proteins in
colon and short chain fatty acids in feces, the damage of TDEP to colon
was confirmed. The colon injury was more obvious when antibiotics were
added, which suggested that some gut bacteria might play an active role
in TDEP-induced colon injury. Through the correlation analysis, 7 bac-
teria that are beneficial to colonic function were identified (Barnesiella,
Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus,
Enterorhabdus, Alistipes), and 3 bacteria that were harmful to colonic
function were found (Bilophila, Mucispirillum, Ruminiclostridium). This
study reminded us that attention should be paid to the changes of gut
microbiota when using traditional Chinese medicine for a long time to
avoid adverse effects. The regulation of these bacteria can improve in-
testinal diseases such as inflammatory bowel disease.
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