

Translocating lipopolysaccharide correlates with the severity of enterovirus A71-induced HFMD by promoting pro-inflammation and viral IRES activity

Yuya Wang

Chongqing Medical University

Xiaoling Xue

Chongqing Medical University

Kena Dan

Chongqing Medical University

Xiongbo Yang

Chongqing University

Qingqing Yang

Changzhi Medical College Affiliated Heping Hospital

Xujiao Feng

Changzhi Medical College Affiliated Heping Hospital

Jing Yang

Chongqing University

Bangtao Chen (■ medisci@163.com) Chongqing University https://orcid.org/0000-0001-6540-8726

Research

Keywords: Hand, foot, and mouth disease, Enterovirus A71, 2A protease (2A1'), Lipopolysaccharide, Inflammation, internal ribosomal entry site (IRES)

Posted Date: August 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-806112/v1

License: (c) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Gut Pathogens on November 22nd, 2021. See the published version at https://doi.org/10.1186/s13099-021-00465-x.

1	Article type: Research
2	Title: Translocating lipopolysaccharide correlates with the severity of enterovirus
3	A71-induced HFMD by promoting pro-inflammation and viral IRES activity
4	
5	Authors: Yuya Wang ¹ , Xiaoling Xue ² , Kena Dan ³ , Xiongbo Yang ⁴ , Xujiao Feng ⁵ ,
6	Qingqing Yang ⁵ , Jing Yang ^{4*} and Bangtao Chen ^{4*}
7	
8	1 Department of Obstetrics and Gynecology, the Third Affiliated Hospital of
9	Chongqing Medical University, Chongqing, 401120, China
10	2 Department of Hematology, the Third Affiliated Hospital of Chongqing Medical
11	University, Chongqing, 401120, China
12	3 Department of Dermatology, the Third Affiliated Hospital of Chongqing Medical
13	University, Chongqing, 401120, China
14	4 Department of Dermatology, Chongqing University Three Gorges Hospital,
15	Chongqing, 404100, China
16	5 Department of Infectious diseases, Heping Hospital Affiliated to Changzhi Medical
17	College, 046000, China
18	*Correspondence: feijing_2002@163.com; medisci@163.com
19	Running Title: LPS Aggravates EV-A71-induced HFMD
20	Key words: Hand, foot, and mouth disease; <i>Enterovirus</i> A71; 2A protease (2A ^{pro});
21	Lipopolysaccharide; Inflammation; internal ribosomal entry site (IRES)
22	

ABSTRACT

24	Background: The increase of inflammation-inducing enterobacteria was recently
25	observed in severe hand, foot, and mouth disease (HFMD) caused by Enterovirus A71
26	(EV-A71). This study aimed to verify the occurrence of bacterial translocation (BT)
27	and further explore the contributory role of BT to severity of EV-A71-mediated
28	HFMD cases.
29	Methods: Serum specimens from 65 mild and 65 severe EV-A71-associated HFMD
30	cases and 65 healthy children were collected. EV-A71 VP1 in serum, inflammatory
31	mediators including C-reactive protein, IL-1 β , IL-6, interferon- γ and tumor necrosis
32	factor- α , BT related biomarkers including Claudin-3, intestinal fatty acid binding
33	protein, lipopolysaccharide (LPS), soluble CD14(sCD14) and endotoxin core
34	antibody were measured by ELISA. Bacterial DNA (BactDNA) fragments were
35	quantified by quantified PCR (qPCR). Rhabdomyosarcoma (RD) cells, infected with
36	LPS-pre-incubated EV-A71 or transfected with plasmid containing viral 2A ^{pro} or
37	mRNA containing viral internal ribosomal entry site (IRES), were post-treated with or
38	without LPS in vitro. EV-A71 RNA and viral or cellular proteins were determined by
39	qPCR and western blot, respectively.
40	Results: Compared to mild HFMD patients, remarkably higher inflammatory
41	mediators as well as BT-related biomarkers except BactDNA were observed in severe
42	HFMD cases (all P <0.05). In severe HFMD group, circulating concentrations of LPS
43	and sCD14 showed statistical correlations with inflammation indices (all P <0.05),
44	serum levels of EV-A71 VP1 were found to be positively correlated with serum LPS

45	(r=0.341, P=0.005) and serum sCD14(r=0.458, P<0.001). In vitro, EV-A71
46	attachment and internalization were only slightly promoted by LPS pre-incubation;
47	however, EV-A71 proliferation and viral 2A ^{pro} -mediated IRES activity were
48	significantly accelerated by LPS post-treatment.
49	Conclusions: Our results collectively indicate that gut-derived translocating LPS
50	contributes to the severity of EV-A71-induced HFMD by driving inflammatory
51	response and viral proliferation via viral 2A ^{pro} -mediated IRES.
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

67 Background

68	Enterovirus A71 (EV-A71) is well known to be the major etiological culprit
69	causing hand, foot, and mouth disease (HFMD) in children aged five and below.
70	EV-A71-associated HFMD generally presents as a self-limiting illness. However,
71	some patients may rapidly develop neurological complications and cardiopulmonary
72	disorders that occasionally even cause death. In 1969, Schmidt et al isolated the first
73	strain of EV-A71 from the stool samples of children with disease of the central
74	nervous system in California, USA [1]. Since then, several outbreaks of EV-A71
75	infection have been reported across the Asia-Pacific region. In China, it caused the
76	death of 479 children during 2008–2009 and more than 1 million cases per year have
77	been monitored since 2008 [2, 3]. Note worthily, three inactivated monovalent
78	EV-A71 vaccines were licensed in China in 2016; however, the vaccines are only
79	available in the private market in China and the vaccines' effectiveness against severe
80	HFMD remains yet unknown [4]. And to date, few established antiviral therapies are
81	available for severe EV-A71 infection. Collectively, EV-A71-associated HFMD
82	(especially the severe conditions) still pose a growing global public health and
83	economic concern in affected areas.
84	EV-A71 is a non-enveloped, positive-sense, single-stranded RNA virus that
85	belongs to genus Enterovirus in the family Picornaviridae. Structurally, the
86	icosahedral virus particle harbors a RNA genome of approximately 7.4 kb in size with
87	two open reading frames, which is flanked by a highly structured 5'-untranslated
88	region (5'UTR) and a 3'UTR with a poly (A) tail [5]. EV-A71 5'UTR contains a type I

89	internal ribosomal entry site (IRES) mediating initiation of viral proteins translation.
90	By IRES-driven translation, four structural viral proteins (VP1-VP4) and seven
91	non-structural viral proteins (2A-2C and 3A-3D) are finally synthesized with the
92	<i>cis</i> -cleavage actions of viral proteases $(2A^{pro} \text{ and } 3C^{pro})$ [6].
93	For the survival of EV-A71 in host, viral proteases are the most important
94	promoters for evading host's antiviral innate immunity by hijacking host cell
95	cap-dependent translation via hydrolysis of eukaryotic initiation factor 4GI (eIF4GI)
96	and other cellular proteins[7]. Although the exact pathogenesis of severe HFMD
97	caused by EV-A71 has not been fully elucidated, increasing evidence have shown that
98	inflammatory mediators including interleukin-1β (IL-1β), IL-6, interferon-gamma
99	(IFN- γ), C-reactive protein (CRP), tumor necrosis factor- α (TNF- α), etc. contribute to
100	the development and severity of EV-A71-associated HFMD in Children [8, 9]. The
101	potential mechanism of systemic inflammation activation accompanied by EV-A71
102	infection has not yet been determined; a recent study preliminarily demonstrated that
103	the up-regulation of inflammation-inducing enterobacteria may be the prevailing
104	cause for severity of HFMD [10].
105	Enteric dysbacteriosis along with increased intestinal mucosal permeability will
106	result in a higher translocation rate of microbial immunogenic components from the

result in a higher translocation rate of microbial immunogenic components from the gut into the circulatory system, which is the so-called bacterial translocation (BT). Serological indicators of leaky gut including Claudin-3 and intestinal fatty acid binding protein (I-FABP), bacterial components including lipopolysaccharide (LPS) and bacterial DNA (BactDNA), products to LPS challenge including soluble CD14 (sCD14) and endotoxin core antibody (EndoCAb) are usually applied to evaluate BT
[11-17]. Clinically, BT was proved to be associated with systemic inflammation in
patients with cirrhosis [13], psoriasis [14], inflammatory bowel disease [15], hepatitis
virus and human immunodeficiency virus infection [16, 17]. However, occurrence of
leaky gut-related BT and its association with exacerbation of inflammatory response
in HFMD children are poorly investigated.

Taken together, we hypothesize that pro-inflammation cytokines characterize the severity of HFMD and increased intestinal permeability-caused BT is one of main culprits for tuning process of inflammation. With regard to this, in present study, we focused on the correlations between leaky gut-related BT and inflammation-driven severity of HFMD, and further assessed the possible mechanism of BT in EV-A71 infection, in the hope of providing more convincing evidence for BT-derived inflammatory pathogenesis of HFMD deterioration.

124

125 Materials and methods

126 Subjects

127 This study was approved by and carried out under the guidelines of the Ethics

128 Committee of Heping Hospital affiliated to Changzhi Medical College. Before

- enrollment, informed consent was obtained from the parents/guardians of all the
- recruited children. Total 130 EV-A71-induced HFMD patients (65 mild cases and 65
- severe cases) and 65 age- and gender-matched healthy children were collected during
- 132 2015 to 2018 in Heping Hospital. All the patients were etiologically confirmed by

EV-A71 RNA detection in stool or throat swabs. According to the Chinese guidelines for the diagnosis and treatment of HFMD (2018 edition) [18], severe HFMD cases were clinically diagnosed if they experienced any neurological complications and/or cardiopulmonary complications. Children with other comorbidities such as juvenile idiopathic arthritis etc. or medications such as systemic anti-inflammation are excluded.

139 Laboratory examination

Peripheral blood samples were collected from all the subjects. Blood cell count and 140 141 liver function were routinely examined. The protein levels of indicators assessed by enzyme-linked immunosorbent assay (ELISA) in present study involved CRP 142 (#E007462, 3ABio), IL-1β (#E001772, 3ABio), IL-6 (#E000482, 3ABio), IFN-γ 143 144 (#C608-01,GenStar), TNF-a (#489204, Cayman), LPS (#DG11072H, Dogesce), I-FABP (#DFBP20, R&D Systems), Claudin-3 (#abx250611, Abbexa), sCD14 145 (#DC140, R&D Systems) and EndoCAb (#E013362, 3ABio). Human EV-A71 VP1 146 protein ELISA kit (#MM-13481H2, MeiMian) was applied to detect the protein level 147 of EV-A71 VP1 from blood serum. Assays were performed according to the 148 manufacturer's specifications and the detection limits were in line with the 149 manufacturer's instructions. All the plates were read by the I MarkTM Micro plate 150 Reader (BIO-RAD). 151

152 Cell culture, virus infection, transfection, stimulation and luciferase assay

Human rhabdomyosarcoma (RD) cells (ATCC® CCL-136) were maintained in
Dulbecco's modified Eagle's medium (DMEM, Gibco) containing 10% fetal bovine

serum (FBS, Hyclone) with 100 U/mL penicillin and 100 µg/mL streptomycin. The 155 cells were infected with EV-A71 (ATCC® VR-1432™, BrCr strain) at the multiplicity 156 of infection (MOI) of 2 or transfected with N-terminal GFP-tagged EV-A71 2A 157 expression plasmid and/or bi-cistronic reporter plasmid containing 158 Cap-Rluc-vIRES-Fluc. Plasmid construction, transcription in vitro and transfection 159 using Lipofectamine 2000 reagent (Life Technologies) were done as previously 160 described[19]. LPS (#tlrl-peklps, InvivoGen) pre-incubation or post-treatment were 161 specified in figure legends. Observation of cell morphology was performed with 162 163 microscope. The detail information about cell culture, virus preparation and virus infection and luciferase assay referred to other reports [19] 164

165 Western blot and antibodies

166 The RD whole-cell lysates were prepared by lysing with RIPA buffer and

167 western blot was performed as Wang *et al* described [20].Anti-EV-A71 VP1

168 (#PAB7631-D01P) and anti- β -actin (#BE0021-1000) were obtained from Abnova and

169 EASYBIO, respectively. Anti-ERK1/2(#9102), anti-phospho-ERK1/2 (#9101) and

anti- eIF4GI (#2858) were purchased from Cell Signaling Technology. The target

171 protein and β -actin were detected with anti-rabbit or mouse secondary antibody

172 conjugated with horseradish peroxidase (#BE0103-100 and # BE0108-100,

173 EASYBIO). Specific bands were visualized with enhanced chemiluminescent

substrate (ECL).Each immunoblot assay was carried out at least three times and one

175 of them was presented.

176 Quantification of BactDNA fragments and EV-A71 RNA

Quantification of BactDNA fragments was performed as previously described [21]. To avoid potentially bacterial contamination of molecular biology reagents, all specimens were processed in airflow chambers by the same investigator and all tubes were never exposed to free air. To remove potentially confounding 16S rDNA contamination, 6 tubes of prepared DEPC water were set as negative controls and the processes of water from DNA extraction to quantitative PCR (qPCR) were completely synchronized with those of blood.

Genomic DNA was isolated from a total of 200µL of serum with QIAmp DNA 184 185 Blood Minikit (Qiagen, Hilden, Germany) according to the manufacturer's instructions and DNA was eluted in a 100 µL final volume. BactDNA levels were 186 determined by qPCR in a 20 μ L amplification reaction with forward primer (5' 187 188 -AGAGGGTGATCGGCCACA-3 ') and reverse primer (5 TGCTGCCTCCCGTAGGAGT-3 '), the universal eubacterial primers of a 189 conserved region of 16S rDNA gene. The amplification conditions for the 59 base 190 pairs of DNA fragment were 95°C for 10 min, followed by 45 cycles at 95°C for 15 s 191 and 60°C for 60 s. Each sample was amplified in triplicate and the BactDNA 192 content was calculated according to a standard curve that generated from serial 193 dilutions of plasmid DNA containing known copy numbers of the template. The final 194 circulating BactDNA concentration was calculated by subtracting proportion of 16S 195 rDNA copies/µL detected in water controls from those in blood. 196

197 Quantification of EV-A71 RNA was performed as previously described [22].

198 Statistical analyses

199	Data were analyzed using IBM SPSS software (version 17.0, SPSS Inc., China)
200	and expressed as the mean (M) \pm standard deviation (SD) or number (%).Normal
201	distribution of raw data were confirmed by Kolmogorov-Smirnov tests. There were
202	no outliers in continuous data by inspection of related boxplots. For comparison of
203	demographic information and clinical characteristics at baseline among groups,
204	Fisher's exact Chi-square test or one-way analysis of variance (ANOVA) were
205	conducted except specification. Analysis of covariance (ANCOVA) controlling for
206	age and gender was used to analyze cytokines and bacterial measures among the three
207	groups, and Bonferroni's multiple comparison test that can calculate the corrected
208	statistical significance for multiple comparisons was performed for post-hoc analysis
209	of pairwise comparisons. Partial correlation analysis controlling for age, gender and
210	disease course was used to determine the relationship between bacterial measures and
211	inflammation cytokines or serum viral proteins. All the tests were two-sided. A
212	<i>P</i> -value < 0.05 was accepted as the cutoff for statistical significance.

214 **Results**

1. General characteristics of the participants

The participants' characteristics are summarized in Table 1. Among patients, children in the severe group were much younger $(27.57\pm15.53 \text{ months})$ than who in the mild group $(39.75\pm23.81 \text{ months}, P<0.001)$, moreover, severe cases were more prone to have high body temperature, increased heart rate, elevated counts of white blood cells, monocyte and platelet in blood (all *P*<0.05). Distributions of typical

221	rashes in severe patients resembled those in mild patients, whereas erythematous
222	and/or papulovesicular eruptions (atypical rashes) more frequently occurred in the
223	mild (10.77% vs. 1.54%, P <0.05) and herpangina was more common in the severe
224	(64.62% vs. 21.54%, P <0.01). Of the severe patients, the most common complication
225	was neurological dysfunction (78.46%), followed by pulmonary disorders (29.23%)
226	and cardiovascular disorders (6.15%). Furthermore, there were no differences in
227	aspects of heart rate, body temperature and laboratory results between healthy
228	children and mild cases (all P>0.05).

Table 1 Clinic and laboratory characteristics of healthy subjects and HFMD patients

Items	Healthy	Mild	Severe	
	control(n=65)	HFMD(n=65)	HFMD(n=65)	
Gender (Female/Male)	28/37	29/36	28/37	
Age (months)	41.42±15.44	39.75±23.81	27.57±15.53***	
EV-A71 positive, n (%)	-	65(100)	65(100)	
Typical rashes [‡] , n (%)	-	55(84.62)	56(86.15)	
Hands	-	50(76.92)	56(86.15)	
Feet	-	49(75.38)	53(81.54)	
Mouth	-	42(64.62)	50(76.92)	
Buttock	-	19(29.23)	26(40.00)	
Atypical rashes#, n (%)	-	7(10.77)	1(1.54)*	
Herpangina, n (%)	-	14(21.54)	42(64.62)**	
Cardiovascular disorders, n (%)	-	-	4(6.15)	
Neurological disorders, n (%)	-	-	51(78.46)	
Pulmonary disorders, n (%)	-	-	19(29.23)	
Heart Rate (/min)	123.5±15.23	127.12±18.37	144.62±18.04***	
Body Temperature (°C)	37.45±0.85	37.45±0.37	38.38±0.62***	
WBC Count (10 ⁹ /L)	7.43±1.66	8.78±1.78	12.01±3.42***	
Lymphocyte Count (10 ⁹ /L)	3.22±1.16	3.65 ± 1.40	4.23±3.28	
Monocyte Count (10 ⁹ /L)	0.54 ± 0.25	0.57 ± 0.24	0.81±0.62**	
Platelet Count (10 ⁹ /L)	239.37±53.62	254.92±49.27	277.37±57.85**	
CK (U/L)	102.37±47.83	106.64±52.45	112.23±104.35	

ALT(IU/L)	22.20±6.15	23.37±8.53	25.53±13.28
AST (IU/L)	32.53±15.36	33.53±17.63	36.35±20.25
LDH (U/L)	261.24±46.53	276.25±54.53	292.43±78.53
Sampling time (d)†	-	2.51±0.82	2.77±0.91

230 \ddagger Maculo-papular and/or vesicular rashes. # Erythematous and/or papulovesicular231eruptions. \ddagger Timing of serum sampling after onset of HFMD. Compared with mild232HFMD group, * P < 0.05, ** P < 0.01, *** P < 0.001. WBC, white blood cells; CK,233creatine kinase; AST, aspartate transaminase; ALT, alanine aminotransferase; LDH,234lactate dehydrogenase. The data were presented as number of patients (%) or M±SD.

235

236 **2. Pro-inflammation phenotype dominates in HFMD cases**

As shown in Fig. 1, the results of ANCOVA analysis displayed that there were 237 statistically significant differences between the healthy group, the mild and severe 238 HFMD groups in terms of CRP (F=138.5, P < 0.001), IL-1 β (F=361.4, P < 0.001), 239 IL-6 (F=276.1, P<0.001), IFN- γ (F=730.9, P<0.001) and TNF- α (F=832.4, P< 240 0.001). Further, post-hoc analysis using Bonferroni's multiple comparison test found 241 242 that serum levels of the inflammatory biomarkers dramatically increased approximately 3- to 8- times on average in the severe group in comparison with the 243 mild group (all P < 0.001), while the protein levels of sera CRP, IL-6, IFN- γ and 244 TNF- α in mild HFMD group were only 1- to 2-fold higher as compared to health 245 control group (all P < 0.05). These results demonstrate and verify the existence of 246 systemic pro-inflammation in EV-A71-associated HFMD cases, especially in the 247 248 severe patients.

Fig.1 Differentially displayed cytokines in the three groups.

251 CRP, C-reactive protein; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon. 252 Data were presented as boxplots. In post-hoc analysis using Bonferroni's multiple 253 comparison test, n.s.>0.05, *P < 0.05, **P < 0.01, ***P < 0.001.....analysis using 254 ANCOVA.

255

256 **3. BT occurs in severe HFMD cases**

Next, related serum markers of BT were measured in all the subjects (Fig.2). Regarding indices of bacterial components (LPS and BactDNA), LPS-response products (sCD14 and EndoCAb), and "leaky gut" (Claudin-3 and I-FABP), statistically significant differences between the three groups were all observed (all *P* < 0.01) from ANCOVA analysis results. Post-hoc analysis showed that only BactDNA titers (17.25±5.78 *vs.* 13.33±6.97 copies/µL, *P*<0.01) was moderately

increased in the mild HFMD group than healthy control group, while serum 263 concentrations of LPS (41.48±16.78 vs. 19.44±8.81 pg/mL, P<0.001), sCD14 264 (3.32±1.35 vs. 1.47±1.12 x10⁶ pg/mL, P<0.001), Claudin-3 (42.53±20.48 vs. 265 34.39±13.97 ng/mL, P<0.05) and I-FABP (57.16±18.35 vs. 21.51±8.89 pg/mL, 266 P < 0.001) were significantly higher, EndoCAb concentration (143.78± 52.11 vs. 267 167.65 ± 39.77 MMU/mL, P<0.05) was remarkably lower in the severe group than the 268 mild group. These data indicate the presence of "leaky gut" and potential BT from 269 intestine in severe HFMD cases. 270

271

273

Fig. 2 BT-related biomarkers among groups of HFMD and healthy control.

274 LPS, lipopolysaccharide; BactDNA, bacterial DNA; sCD14, soluble CD14;
275 EndoCAb, endotoxin core antibody; I-FABP, intestinal fatty acid-binding protein.

Data were presented as boxplots. In post-hoc analysis using Bonferroni's multiple comparison test, n.s. >0.05, *P <0.05, ***P<0.001;.....analysis using ANCOVA

279	4. LPS positively correlates with inflammation severity and serum viral protein
280	In the severe group (Table 2), circulating concentration of LPS was further found
281	to be positively correlated with all the quantified inflammatory mediators ($P < 0.05$ for
282	all variables); sCD14 was positively associated with CRP (P =0.041), IL-1 β (P =0.001).
283	IL-6 (P =0.004) and IFN- γ (P =0.019) after controlling potential confounders.
284	Pro-inflammation was well-proved to facilitate viral replication in vivo and in vitro. In
285	severe HFMD cases, serum protein levels of EV-A71 VP1 determined by ELISA were
286	found to be positively correlated with serum LPS [$r=0.341$, $P=0.005$, Fig. 3a] and
287	serum sCD14 [r=0.458, P<0.001, Fig. 3b], respectively. These data imply the link that
288	circulating LPS from BT, as well as LPS responded sCD14, might be the important
289	cause synergistically leading to the higher levels of pro-inflammation mediators and
290	viral proteins observed in severe HFMD patients.

Table 2 Correlation between BT and inflammation in severe HFMD patients

	CRP		IL-1β		IL-6		IFN-γ		TNF-α	
Cytokines	r	Р	r	Р	r	Р	r	Р	r	Р
LPS	0.323	0.039*	0.470	0.002*	0.621	0.007*	0.319	0.041*	0.652	0.001*
BactDNA	0.122	0.341	0.237	0.037*	0.258	0.633	0.053	0.346	0.324	0.092
I-FABP	0.072	0.098	0.156	0.481	0.217	0.093	0.143	0.071	0.264	0.271

Claudin-3	0.051	0.365	0.224	0.472	0.232	0.053	0.204	0.094	0.044	0.431
sCD14	0.672	0.041*	0.534	0.001*	0.648	0.004*	0.513	0.019*	0.837	0.052
EndoCAb	0.155	0.362	0.243	0.129	0.047	0.325	0.474	0.061	0.235	0.353

293 *P<0.05. Analyses using partial correlation analysis.

Fig.3 Partial correlation analysis of serum protein levels of EV-A71 VP1 and LPS(a) or sCD14 (b) in severe HFMD cases.

```
5 LPS pre-incubation slightly promote EV-A71 attachment and internalization
299
            To explore the effect of circulating LPS on EV-A71 infection, EV-A71 Strain
300
       BrCr was used to infect RD cells in vitro after pre-incubating the virus with E-coli
301
       K12-derived LPS at 37°C for 2 hours. Firstly, cytotoxicity of LPS to RD cells was
302
       determined and results found that LPS at less than 1µg/mL was not toxic to the cells
303
       (Fig. 4a). As Fig. 4 showed, only slightly increased levels of EV-A71 RNA on cell
304
       surface (relative multiple: 1.29 \pm 0.13, P < 0.05) and that entering the cell (relative
305
       multiple: 1.20 \pm 0.06, P \le 0.01) were only observed in 500ng/mL LPS treatment group
306
```

- in comparison with mock treatment group, which indicates that LPS pre-incubation
- 308 only slightly facilitate EV-A71 infection at steps of viral attachment and
- 309 internalization.
- 310

312

Fig. 4 LPS pre-incubation on EV-A71 attachment and internalization.

RD cells were treated with 0.1ng/mL to 10µg/mL LPS for 0 to 12 hours followed by 313 cell viability assessment using CCK8 (a). 2 MOI of EV-A71 were pre-incubated with 314 315 200ng/mL or 500ng/mL LPS at 37°C for 2 hours, then the virus were used to infect RD cells with binding buffer on ice. 1 hour later, the cells were washed (attachment 316 assessment) or/and cultured at 37°C for another 1 hour and then treated with trypsin 317 318 (internalization assessment). Viral RNA was extracted by commercial kit and EV-A71 RNA was determined by qPCR (b). Data were showed as $M \pm SD$ and *student's t* test 319 was used for comparisons, n.s. >0.05, **P* <0.05, ***P*<0.01. 320 321

6 LPS accelerate EV-A71 replication by promoting viral 2A^{pro}-mediated IRES activity

The effect of LPS post-treatment on EV-A71 proliferation in vitro was further examined. Compared to virus-infected cells without LPS challenge, 200ng/mL or

326	500ng/mL LPS treatments dramatically promoted the occurrence of cytopathic effect
327	(CPE) of RD cells induced by EV-A71 infection [Fig. 5a] and increased the
328	expressions of VP1 [Fig. 5b]. In parallel, protein levels of LPS responded sCD14 in
329	cellular supernatants were also increased with the treatments of LPS [Fig. 5c].
330	Because the synthesis of enterovirus protein is mediated by viral 2A ^{pro} -driven viral
331	IRES, effect of LPS post-treatment on viral IRES was assessed. As Fig. 5d presented,
332	overexpression of viral 2A ^{pro} or treatment with 500ng/mL LPS moderately promoted
333	IRES activity ($P \le 0.05$ for all variables) compared with mock treatments, however,
334	IRES activity was remarkably increased by 200ng/mL or 500ng/mL LPS in 2A ^{pro}
335	overexpressed cells when compared with $2A^{pro}$ or LPS treatment (P<0.001 for all
336	variables). We previously proved that 2A ^{pro} -driven viral IRES activity was regulated
337	by cellular phosphorylated extracellular signal-regulated kinase (ERK)-mediated
338	eIF4GI trans-cleavage [23]. Fig. 5e showed that 2A ^{pro} -mediated phosphorylation of
339	ERK and cleavage of eIF4GI were significantly accelerated by 500ng/mL LPS. These
340	data collectively demonstrate that LPS can facilitate EV-A71 replication by promoting
341	viral 2A ^{pro} -mediated IRES activity, which imply the contributory role of translocating
342	LPS to the severity of EV-A71-induced HFMD.

344

Fig.5 The effect of LPS post-treatment on proliferation of EV-A71 in vitro. RD cells 345 were infected with EV-A71 at an MOI of 2. 2 hours later, the cells were treated with 346 LPS at the concentration of 200ng/mL or 500 ng/mL, respectively. At 12 hours post 347 infection, photomicrographs were taken (original magnification, 100X)(a), the protein 348 levels of viral VP1 in cell lysates were measured by western blot (b) and protein 349 levels of sCD14 in cellular supernatants were determined by ELISA(c). RD cells were 350 pre-transfected with p-EGFP-Vector (Vec, 2µg/well, 6-well plate) or p-EGFP-2A (2A, 351 2µg/well, 6-well plate), respectively. Subsequently, 12 h later, the cells were 352

353	re-transfected with Cap-Rluc-vIRES-Fluc mRNA (100 ng/well, 96-well plate). 4
354	hours later, the cells were treated with 200ng/mL or 500 ng/mL LPS for another 12
355	hours. The intensities of Fluc and Rluc were detected as described in MMs. The
356	results (Rluc/Fluc) indicate the M \pm SD of three independent experiments (d). RD
357	cells were pre-transfected with p-EGFP-Vector (Vec) or p-EGFP-2A (2A),
358	respectively. 12 h later, the cells were treated with 500 ng/mL LPS for another 12
359	hours. The cell lysates were used for the protein detection of eIF4GI,
360	phosphorylated-ERK (p-ERK) and total ERK (t-ERK) by western blot (e). EV,
361	EV-A71; EVL200, EV-A71+200ng/mL LPS; EVL500, EV-A71+500ng/mL LPS.
362	2AL200, 2A+200ng/mL LPS; 2AL500, 2A+500ng/mL LPS. Statistical difference was
363	determined by <i>student's t</i> test. n.s. >0.05, * <i>P</i> <0.05, ** <i>P</i> <0.01, *** <i>P</i> <0.001.
364	

365 Discussion

EV-A71 is generally regarded as the major causative agent for severe HFMD 366 cases with neurological complications. Several independent studies have previously 367 shown a close association between elevated inflammatory mediators and HFMD 368 severity [8, 9, 24-26]. Consistent with that, levels of inflammatory mediators including 369 CRP, IL-6, IFN- γ , IL-1 β and TNF- α in mild and severe HFMD cases with EV-A71 370 infection in present study were moderately and dramatically increased, respectively. 371 Serum IL-6 has been reported to be strongly associated with aseptic meningitis among 372 children with EV-A71-induced HFMD [26].As is well known, to remove pathogenic 373 microorganisms and protect the tissue from damage, CRP rises sharply in the plasma 374

with IL-6 stimulation. IFN-y, an imperative contributor of the generation of 375 IFN- γ -inducible protein-10 (IP-10), is responsible for the recruitment of Th1 376 lymphocyte into the central nerve system during EV-A71 infection [8]. Although 377 functional redundancies of IL-1 β and TNF- α have been reported, the supposed 378 pyrogenic role that contributes to the febrile response commonly observed in severe 379 HFMD patients would be more crucial [9]. Actually, the increases in production of 380 these inflammatory mediators were unlikely to be purely due to increased viral 381 replication, they may interact and synergize to induce tissue damage in a sophisticated 382 383 and coordinated network [8]. Previous profiling studies mainly explored the changes in inflammatory cytokines and potential cytokines for predicting the severity and 384 criticality of HFMD. In present study, the involvement of inflammation response was 385 386 further verified, more than that, we were particularly interested in the potential causes for systemic inflammation activation and we focused on the BT in EV-A71-associated 387 HFMD individuals, which had never been investigated before. 388

BT is the passage of bacterium and/or bacterial products from the gut lumen into the organism in absence of bacteremia. In this process, increased intestinal mucosal permeability is indispensable. The tight junction is universally demonstrated to be the structural basis for maintaining normal intestinal permeability [27, 28]. Claudin-3 and I-FBPA, the two key components of tight junction, present at high levels in the blood can reliably reflect increased intestinal permeability as they are released into systemic circulation by enterocytes when intestinal epitheliums are compromised.

In present study, the evidence that remarkable increases in serum levels of

I-FABP and Cludin-3 only in severe cases links the increased intestinal permeability 397 with the severity of EV-A71-associated HFMD, which has not been reported 398 previously. Correspondingly, the peripheral blood concentration of LPS, but not 399 BactDNA, was significantly higher in severe other than mild cases with EV-A71 400 infection. Translocating LPS is in fact related to an exacerbation of the inflammatory 401 response [29] and the following correlation analysis also showed that the circulating 402 concentrations of inflammatory mediators had good correlativity with LPS, as well as 403 sCD14. As LPS-specific host response, sCD14 circulates at high levels in the serum 404 and interacts with translocating LPS to stimulate antigen-presenting cells via toll-like 405 receptor 4 (TLR4) signaling [30].Under bacteria or LPS challenge, vascular 406 endothelial cells and perivascular mast cells have been reported to express abundant 407 408 TLR4, thus, the inflammatory cytokines are synthesized and secreted [31-33]. Furthermore, decreased host EndoCAb in peripheral blood failed to bind and clear 409 LPS from circulation, which ensures high serum level of LPS for a long time and 410 subsequently maintains systemic inflammation. It is also worth noting that serum 411 BactDNA loads in mild cases with aggression may have little effect on inflammation 412 state given the results from correlation analysis and differential expressions of 413 BactDNA among mild or severe cases. We can only speculate that serum BactDNA 414 loads quantified by qPCR likely underestimate the presence of BactDNA within 415 whole blood and corresponding perturbation of inflammation markers may be 416 417 transient. Collectively, these findings emphasize that translocating LPS is implicated in EV-A71-induced systemic inflammation responses and argue for a causative 418

419 relationship between circulating LPS and disease exacerbations.

Most inflammatory cytokines are crucial immune modulators in host-virus 420 interaction. Upon viral infection, the fine-tuning levels of myriad inflammatory 421 mediators usually determine an anti-viral state advantageous to the hosts or a pro-viral 422 state advantageous to the invading viruses. Translocating LPS will undoubtedly 423 aggravate inflammatory response and may correspondingly promote viral propagation. 424 Clinically, LPS, as well as sCD14, was demonstrated to be positively correlated with 425 EV-A71 VP1 loads in serum in present study. Intestinal bacterial surface LPS was 426 427 uncovered to bind poliovirus (a member of Enterovirus genus) and thus enhanced virion stability and cell attachment [34], which may be also exploited by EV-A71 for 428 replication and transmission. In vitro, we further demonstrated that EV-A71 429 430 attachment and internalization were only slightly promoted by LPS pre-incubation; in contrast to that, EV-A71 proliferation was significantly facilitated by LPS 431 post-incubation, which was further proved to be linked with viral 2A^{pro}-mediated 432 IRES activity. Apart from the mentioned perspectives, LPS was also proved to 433 stimulate early growth response-1 (EGR1) translocation into the nucleus and the 434 nuclear EGR1 facilitates EV-A71 replication by binding to EV-A71 5'UTR, a region 435 that contains IRES structure [35]. 436

Unfortunately, at least four limitations exist in our study. First, correlations
between these inflammatory mediators and BactDNA in mild patients were not
conducted as they were moderately elevated in comparison to the healthy children.
Second, we didn't perform stratified analyses in subgroups of neurological

dysfunction or cardio-respiratory disorders, which is partly to blame for the limited
enrollment of severe cases. Furthermore, as with all case-controlled clinical studies,
present study failed to adequately explain the causal relationship between BT and
disease severity, related animal experiments are expected for ethical considerations.
Last but not the least, the molecular mechanism by which translocating LPS promotes
systemic inflammation and aids viral replication remains to be further investigated.

447

448 Conclusion

449 Current study mainly verifies the presence of leaky gut-caused bacterial 450 translocation and further correlates translocating LPS to severity of EV-A71-induced 451 HFMD possibly by driving pro-inflammation response and promoting viral 452 2A^{pro}-mediated IRES activity. Collectively, these observations indicate that bacterial 453 translocation may be a novel anti-inflammatory or antiviral therapeutic target for 454 improving disease outcome in severe cases with EV-A71 infection.

455

456 Acknowledgements: none

457

458 Abbreviations

459 Lipopolysaccharide:LPS; EV-A71:*Enterovirus* A71; HFMD:hand, foot, and mouth

460 disease; IRES:internal ribosomal entry site; IFN-γ:interferon-gamma; CRP:C-reactive

461 protein; TNF-α:tumor necrosis factor-α; I-FABP:intestinal fatty acid binding protein;

462 sCD14:soluble CD14; EndoCAb:endotoxin core antibody; eIF4GI:eukaryotic

463	initiation factor 4GI; CPE:cytopathic effect; ERK:extracellular signal-regulated							
464	kinase ;TLR4:toll-like receptor 4; EGR1:early growth response-1.							
465	Funding							
466	This work was funded by the grant from the National Natural Science Foundation of							
467	China (82003337) and China Postdoctoral Science Foundation (2020M683268).							
468								
469	Declarations							
470	Ethics approval and consent to participate							
471	This study was approved by and carried out under the guidelines of the Ethics							
472	Committee of Chongqing University Three Gorges Hospital.							
473								
474	Competing interests: None.							
475								
476	Authors' contributions							
477	JY and BC designed the study; YW wrote the manuscript; QY and XF collected serum							
478	samples; XX and KD carried out the experiments; XY analyzed the data. All authors							
479	read and approved the final manuscript.							
480								
481	Availability of data and materials							
482	All data involved in this study is available upon reasonable request made to the							
483	corresponding author.							
484								

485 Acknowledgements: None.

486

487 **References**

- 488 1 Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with
- disease of the central nervous system. J Infect Dis,1974,129(3):304-309.
- 490 2 Li Y, Chang Z, Wu P, et al. Emerging Enteroviruses Causing Hand, Foot and Mouth Disease,
- 491 China, 2010-2016. Emerg Infect Dis,2018, 24(10):1902-1906.
- 492 3 Yu H, Cowling BJ.Remaining challenges for prevention and control of hand, foot, and mouth
- disease. Lancet Child Adolesc Health, 2019, 3(6):373–374.
- 494 4 Head JR, Collender PA, Lewnard JA, et al. Early Evidence of Inactivated Enterovirus 71
- 495 Vaccine Impact Against Hand, Foot, and Mouth Disease in a Major Center of Ongoing
- 496 Transmission in China, 2011-2018: A Longitudinal Surveillance Study. Clin Infect Dis,
- 497 2020,71(12):3088-3095.
- 498 5 Guo H, Li Y, Liu G, et al. A second open reading frame in human enterovirus determines viral
- replication in intestinal epithelial cells. Nat Commun, 2019,10(1):4066.
- 500 6 Yuan J, Shen L, Wu J, et al. Enterovirus A71 Proteins: Structure and Function. Front
 501 Microbiol,2018, 9:286.
- 502 7 Chen KR, Ling P. Interplays between Enterovirus A71 and the innate immune system. J Biomed
 503 Sci,2019, 26(1):95.
- 504 8 He Y, Feng Z, Wang W, et al. Global cytokine/chemokine profile identifies potential progression
- prediction indicators in hand-foot-and-mouth disease patients with Enterovirus A71
 infections. Cytokine, 2019, 123:154765.

507	9 Teo FMS.	Nyo M.	Wong AA,	et al.	Cytokine	and Chemokine	Profiling	in Patients	with Hand,
	/,							,	

- 508 Foot and Mouth Disease in Singapore and Malaysia. Sci Rep,2018, 8(1):4087.
- 509 10 Li W, Zhu Y, Li Y, et al. The gut microbiota of hand, foot and mouth disease patients
- 510 demonstrates down-regulated butyrate-producing bacteria and up-regulated
- 511 inflammation-inducing bacteria. Acta Paediatr, 2019, 108(6):1133-1139.
- 512 11 Stehle JR Jr, Leng X, Kitzman DW et al. Lipopolysaccharide-binding protein, a surrogate
- 513 marker of microbial translocation, is associated with physical function in healthy older adults.
- 514 J Gerontol A Biol Sci Med Sci, 2012, 67(11):1212-1218.
- 515 12 Hunt PW, Sinclair E, Rodriguez B, et al. Gut epithelial barrier dysfunction and innate immune
 516 activation predict mortality in treated HIV infection. J Infect Dis, 2014, 210(8):1228-1238.
- 517 13 Alvarez-Silva C, Schierwagen R, Pohlmann A, et al. Compartmentalization of Immune
- 518 Response and Microbial Translocation in Decompensated Cirrhosis. Front Immunol,2019,519 10:69.
- 520 14 Sikora M, Stec A, Chrabaszcz M, et al.Intestinal Fatty Acid Binding Protein, a Biomarker of
- 521 Intestinal Barrier, is Associated with Severity of Psoriasis. J Clin Med, 2019, 8(7):1021.
- 522 15 Luchetti MM, Ciccia F, Avellini C, et al.Gut epithelial impairment, microbial translocation and
- 523 immune system activation in inflammatory bowel disease-associated spondyloarthritis.2020
- 524 [published online ahead of print]. Rheumatology (Oxford).
- 525 16 Marchetti G, Cozzi-Lepri A, Tincati C, et al.Immune activation and microbial translocation in
- 526 liver disease progression in HIV/hepatitis co-infected patients: results from the Icona527 Foundation study. BMC Infect Dis,2014, 14:79.
- 528 17 Sandler NG, Koh C, Roque A, et al. Host response to translocated microbial products predicts

529 outcomes of patients with HBV or HCV infection. Gastroenterology,2011, 141(4):1220-1230.

- 530 18 Li XW, Ni X, Qian SY, et al.Chinese guidelines for the diagnosis and treatment of hand, foot
- and mouth disease (2018 edition). World J Pediatr, 2018, 14(5):437-447.
- 532 19 Chen B, Wang Y, Pei X, et al. Cellular Caspase-3 Contributes to EV-A71 2Apro-Mediated
- 533 Down-Regulation of IFNAR1 at the Translation Level. Virol Sin, 2020,35(1):64-72.
- 20 Wang W, Xiao F, Wan P, et al.EV71 3D Protein Binds with NLRP3 and Enhances the Assembly
 of Inflammasome Complex. PLoS Pathog,2017, 13(1):e1006123.
- 536 21 Such J, Francés R, Muñoz C, et al. Detection and identification of bacterial DNA in patients
- with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology,2002, 36(1):135-141.
- 538 22 Gao M, Duan H, Liu J, et al. The multi-targeted kinase inhibitor sorafenib inhibits enterovirus
- 539 71 replication by regulating IRES-dependent translation of viral proteins. Antiviral Res,540 2014,106:80-5.
- 541 23 Duan H, Zhu M, Xiong Q, et al. Regulation of enterovirus 2A protease-associated viral IRES
- activities by the cell's ERK signaling cascade: Implicating ERK as an efficiently antiviral
 target. Antiviral Res, 2017,143:13-21.
- 544 24 Zeng M, Zheng X, Wei R, et al. The cytokine and chemokine profiles in patients with hand, foot
- and mouth disease of different severities in Shanghai, China, 2010. PLoS Negl Trop Dis, 2013,
- 546 7(12):e2599.
- 547 25 Sun JF, Li HL, Sun BX.Correlation analysis on serum inflammatory cytokine level and
 548 neurogenic pulmonary edema for children with severe hand-foot-mouth disease. Eur J Med
 549 Res,2018, 23(1):33.
- 550 26 Lee JY, Son M, Kang JH et al. Serum interleukin-6 levels as an indicator of aseptic meningitis

- among children with enterovirus 71-induced hand, foot and mouth disease. Postgrad
 Med,2018, 130(2):258-263.
- 553 27 Nagpal R, Yadav H. Bacterial Translocation from the Gut to the Distant Organs: An Overview.
- 554 Ann Nutr Metab,2017, 71(Suppl 1):11-16.
- 555 28 Rooks MG, Garrett WS.Gut microbiota, metabolites and host immunity. Nat Rev
 556 Immunol,2016, 16(6):341-352.
- 557 29 Murtaj V, Belloli S, Di Grigoli G, et al. Age and Sex Influence the Neuro-inflammatory
 558 Response to a Peripheral Acute LPS Challenge. Front Aging Neurosci,2019, 11:299.
- 30 Tsukamoto H, Takeuchi S, Kubota K, et al.Lipopolysaccharide (LPS)-binding protein
 stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced
 TBK1-IKKε-IRF3 axis activation. J Biol Chem, 2018, 293(26):10186-10201.
- 562 31 Page AV, Liles WC.Biomarkers of endothelial activation/dysfunction in infectious diseases.
- 563 Virulence, 2013, 4(6):507-516.
- 564 32 Zeuke S, Ulmer AJ, Kusumoto S et al.TLR4-mediated inflammatory activation of human
- 565 coronary artery endothelial cells by LPS. Cardiovasc Res,2002, 56(1):126-134.
- Jin Y, Zhang C, Wang H, et al.Mast cells contribute to Enterovirus 71 infection-induced
 pulmonary edema in neonatal mice. Lab Invest,2018, 98(8):1039-1051.
- 34 Robinson CM, Jesudhasan PR, Pfeiffer JK.Bacterial lipopolysaccharide binding enhances
 virion stability and promotes environmental fitness of an enteric virus. Cell Host
- 570 Microbe,2014, 15(1):36-46.
- 571 35 Song Y, Cheng X, Yang X, et al. Early growth response-1 facilitates enterovirus 71 replication
- 572 by direct binding to the viral genome RNA. Int J Biochem Cell Biol,2015, 62:36-46.