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Photothermal therapy (PTT) has brought hope for cancer treatments, with hyperthermia-
induced immunogenic cell death (ICD), which is a critical part of therapeutically induced
antitumor immune responses. Limited immune stimulation response in PTT is the primary
reason for incomplete tumor ablation, therefore demonstrating urgent requirements for
ICD amplifier. Herein, a sub-10nm supramolecular nanoassembly was formed by co-
assembly of clinically approved aluminum adjuvant and commonly used indocyanine green
(ICG) under the assistance of lignosulfonate (LS, a green and sustainable multifunctional
lignin derivative) for localized photothermal-immunotherapy of breast cancer. The overall
results revealed that LS-Al-ICG is capable of inducing amplified ICD, efficiently eliciting
solid immune responses through dendritic cells (DCs) activation and cytotoxic T-cell
responses initiation for tumor killing. Moreover, anti-PD-1 therapy blocked the PD-1 pathway
and led to remarkable anti-tumor efficacy against laser-irradiated primary tumors and
distant tumors by potentiating systemic tumor specific T cell immunity. The results of
this study demonstrate a handy and extensible approach for engineering green natural
lignin nanoparticles for cancer immunotherapy, which shows promise for delivering other
therapeutics in biomedical applications.
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1. Introduction

Immunogenic cell death (ICD) is attracting worldwide
attention because it enables dying cancer cells to modulate
the host’s anti-tumor immune system and stimulate immune
surveillance [1]. Therefore, effective activation of treatment-
induced ICD is clinically important for raising systemic anti-
tumor immunity and eradicating post-treatment/abscopal
cancer tissues [2,3]. Among various strategies used for ICD
induction, photothermal therapy (PTT) represents a non-
invasive modality, where cancer cells are ablated owing to
localized heat generated by photothermal agents following
the irradiation of near-infrared (NIR) [4-7]. It has been well
established that PTT can elicit ICD by inducing the release
of tumor-associated antigens (TAAs) and damage-associated
molecular patterns (DAMPs), such as calreticulin (CRT)
translocation, exodus of high mobility group box 1 protein
(HMGB1) expression, and adenosine triphosphate (ATP)
leakage [8,9]. These molecules facilitate the immunogenic
processes of antigen-presenting cells (APCs), as well as
the subsequent recruitment and maturation of dendritic
cells (DCs), which promotes pro-inflammatory cytokine
secretion and stimulates cytotoxic T lymphocytes (CTLs)
[10,11]. Although PTT can rapidly shrink tumor volumes, in
general, it is hard to completely eliminate tumors by using
PTT treatment alone due to a limited penetration depth and
short-term immune system stimulation [12,13]. However,
combining PTT with immunotherapy is expected to overcome
the above challenges [4,14].

Recent research on using immunomodulation to
enhance therapeutic efficacy has led to enormous progress
in immunoadjuvants, which are immunostimulatory
molecules that enhance or induce the function of cellular
immune response [15,16]. At present, immunoadjuvants
are frequently employed in combination with PTT for
addressing the problem of limited immune stimulation
[17-19]. In conjunction with immunoadjuvants, PTT-induced
DAMPs and TAAs can take shape in situ vaccines, which can
obtain excellent immune efficacy through priming intense
immune responses [20]. Immunological effects have been
demonstrated for different types of immunoadjuvants, for
example, inorganic adjuvants, organic adjuvants, synthetic
adjuvants and oil et al. [15]. Aluminum adjuvants is the most
widely used adjuvant in human vaccine so far, which has
shown acceptable safety and effectiveness in the marketed
vaccines [21,22]. However, weak cell-mediated immune
stimulation limits the clinical use of aluminum adjuvant,
which can be enhanced by means of nano preparation
[23,24]. Recently, numerous experimental efforts have been
devoted to enhance aluminum ajduvant-based therapeutic
treatments in combination with PTT. For example, Chen et
al. prepared a multifunctional nanosystem of polydopamine-
coated Al,03; nanoparticles (pD-Al,03; NPs), together with
co-administered CpG for photothermal immunotherapy [25].
Zhu et al. designed the classical aluminum adjuvants and the
photosensitizer chlorin e6 (Ce6) into bovine serum albumin
(BSA) via biomineralized method for photo-mediated immune

therapy [26]. Therefore, combination therapies involving NP-
based photothermal agents and aluminum adjuvants are
promising approaches to activating the body’s immune
system.

So far, numerous strategies have been ultilized in
construction of theranostic nanomedicines [27,28]. Metal-
coordinated supramolecular nanoassemblies (MCSN), which
form nanoscopic architectures driven by non-covalent
interactions and therefore have structures and functions
beyond those of the individual molecular components,
have received substantial interest for cancer theranostics.
Benefiting from the distinctive physicochemical properties,
MCSN can bridge the boundaries between traditional
inorganic and organic materials [29-31]. Facile engineering
can also be achieved by functional components adjustion.
When selecting organic biomaterials, it is worth noting that
lignin is the second most abundant natural polymer after
cellulose, while has not yet been fully utilized for conversion
into high-value products [32,33]. Lignosulfonate (LS), a
water-soluble derivative of lignin, is the major by-product of
sulfite pulping approach. Because of its low cost, all-natural
biodegradability, non-toxicity, and complexation properties,
LS has greater potentials for drug delivery and cancer therapy
than proteins and other polymers [34,35]. Previously, we
found that LS nanocomposites can be synthesized with
various morphologies in media with different pH values [36].
Moreover, LS and gentamicin sulfate (GS) were shown to
self-assemble into a nanocomposite (LS-GS), which exhibited
excellent antibacterial and wound-healing activities [37]. LS
has been used for several applications in the nanotechnology
field, included the green synthesis of NPs [34,35]. Considering
all of the attractive properties, LS may be an ideal candidate
for fabricating aluminum MCSN.

In this study, we developed an innovative MCSN in
association with anti-PD-1 treatment for photothermal
immunotherapy against breast cancer (Fig. 1). In this
approach, we used LS as a complexing agent, surfactant,
and stabilizer, which subsequently co-assembled with the
photosensitizer indocyanine green (ICG) and an aluminum
adjuvant. The entire LS-Al-ICG nanosystem was stabilized
by multiple intermolecular interactions, including hydrogen
and coordination bonds. Additionally, our experimental
results confirmed that LS-Al-ICG primarily accumulated
in tumors and further degraded in the acidic tumor
microenvironment. Under NIR laser irradiation, enhanced
ICD induced by the photothermal effects of LS-Al-ICG. LS-Al-
ICG stimulated cytokine release and antigen presentation,
thereby potentiating DCs activation and subsequent tumor
specific T cell immunity. Eventually, these primed tumor
specific T cells attacked primary tumors after PTT treatment,
as well as distant tumors following combination treatment
with anti-PD-1 therapy. Taken together, our results show that
the facile self-assembly process using naturally derived lignin
to fabricate the supramolecular nanosystem combined with
effective PTT and immunotherapy, and provide new ideas for
the development of clinically effective treatment paradigm
for breast cancer.
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Fig. 1 - Schematic diagram of LS-Al-ICG for photothermal immunotherapy against primary and distant breast tumors.

2. Materials and methods
2.1. Materials

Calcium lignosulfonate (CLS) was acquired from Macklin.
Aluminum chloride (AICl3) and ICG were bought from
Aladdin. The Cell Counting Kit-8 (CCK-8) was bought from
Biosharp. We obtained Alexa Fluor 488-labeled goat anti-
rabbit IgG (H+L), 4,6-diamidino-2-phenylindole (DAPI), the
ATP Assay Kit, rabbit monoclonal antibodies against CRT and
HMGB1 from Beyotime. Enzyme-linked immunosorbent assay
(ELISA) kits for detecting interleukin-2 (IL-2), tumor necrosis
factor-a (TNF-z), and interferon-y (IFN-y) were purchased
from Jiangsu Meimian Industrial Co., Ltd. PD-1 inhibitor
was bought from BeiGene. Fluorochrome-labeled anti-
mouse monoclonal antibodies (CD11c-allophycocyanin (APC),
CD80-fluorescein isothiocyanate (FITC), CD86-phycoerythrin
(PE), CD3-FITC, CD8a-PE, and CD4-APC) were bought from
Proteintech.

2.2.  Synthesis of LS-AL-ICG

LS-Al-ICG was synthesized using a one-step process. On
the basis of the optimization studies, calcium lignosulfonate
solution (3mg/ml, 10ml) was mixed with ICG solution
(0.2mg/ml, 5 ml) and stirred at 25 °C. Next, aluminum chloride
solution (2mg/ml, 15ml) was added at a rate of 0.2ml/min
and mixture stirred overnight. Finally, LS-Al-ICG was collected
through centrifugation (5000rpm, 10 min) and dispersed in
ultra-pure water.

2.3. Characterization of LS-AL-ICG

Morphology and elemental analyses of LS-Al-ICG were
performed by transmission electron microscopy (TEM; JEM-
F2100, Japan). The hydrodynamic diameter, zeta potential and
polydispersity index (PDI) of the LS-Al-ICG were acquired
using a Nano-ZS90 Zetasizer (Malvern Panalytical, UK). The
absorbance spectra of LS, AlCl3, ICG, and LS-Al-ICG was
determined using an ultraviolet-visible near-infrared (UV-
Vis-NIR) spectrometer (UV-3600, Japan). X-ray photoelectron
spectroscopy (XPS) was used to analyze the LS-Al-ICG in terms
of their elemental composition and chemical state, using a
K-Alpha XPS instrument (Thermo Scientific, USA). Fourier
transform infrared spectroscopy (FTIR, Thermo Scientific,
USA) was used to collect infrared spectra, for which the
samples were prepared using KBr.

2.4.  Stability of LS-AL-ICG

The stability of LS-Al-ICG was studied according to the
variations in mean particle size, zeta potential, and PDI,
which were measured after storage in various buffers and the
presence of serum at 4 °C over time.

2.5.  Encapsulation efficiency (EE) and drug-loading rate
(DL) of LS-AL-ICG

The EE and DL of LS-Al-ICG for ICG and Al were calculated
using the Eq. 1 and Eq. 2 indicated below. The ICG
concentration was assayed by UV-Vis-NIR spectrometer,
whereas the Al concentration was assayed by inductively
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coupled plasma (ICP; Thermo, ICAP 7400, USA)

EE (%) =
Weight of ICG or Al in LS—Al-ICG

Weight of ICG or Al added for the encapsulation step x 100%

(1)

Weight of ICG or Alin LS — Al — ICG
Total LS — Al — ICG weight

DL (%) = x100%  (2)

2.6.  Molecular docking of LS-AL-ICG

To explore the mechanism of LS-Al-ICG formation, we
generated the structures of ICG, Al**, and CLS using the
ChemDraw 3D and Gauss 5.0 software programs, and
molecular docking was performed using Autodock.

2.7. Photothermal performance of LS-AL-ICG

The photothermal effect of LS-Al-ICG was evaluated by
recording infrared images and temperature variation in
condition of NIR laser irradiation (808 nm, 1W/cm?) with an
infrared thermal camera (Testo 872; Testo SE & Co. KGaA,
Germany). To study photothermal stability, temperature
cycles were repeated 5 times. ICG and LS-Al-ICG (ICG:
20 pg/ml) were irradiated for 5min, then paused for 10 min,
cooled naturally to room temperature. The photothermal
conversion efficiency (i) of the free ICG and LS-Al-ICG was
calculated following Eq. 3 and Eq. 4:

hS (Tmax - Tsurr) —hs (Tmax.water - Tsurr)
P (1 - 10—A)

(3)

n=

where h and S represented the heat transfer coefficient and
the surface area of the container. “Tmax” “Tmaxwater’ and
“Tsurr” Were initial and the highest temperature of free ICG,
LS-Al-ICG and water. “P” denoted the power of laser. “A” was
the absorbance at 808 nm.

! A
pg - me+mc n

T

m

“m” and “m’” were the mass of the solution containing ICG
or LS-Al-ICG, and quartz dish, respectively. “c” and “c’” were
the heat capacity of the water and quartz dish, respectively.

Where “t”was sample system time constant.

2

2.8.  Invitro release study

To study ICG release, 0.5 ml LS-Al-ICG solution (ICG:260 pg/ml)
were transferred to the dialysis membrane and submerged
in 10ml phosphate buffered saline (PBS), and shaken
at 37 °C (pH=5.0, 6.2 or 7.4). 1ml PBS was removed
dialysis membrane, then replaced with 1ml primary PBS at
indicated time points. The absorption at 780nm in PBS was
assayed using an UV-Vis-NIR spectrometer. The percentages
of ICG release were calculated according to a standard
curve.

2.9.  Cell uptake in vitro

4T1 cells were seeded in laser confocal dishes (2 x 10°
cells/well) and exposed for 4h to free ICG or LS-Al-ICG (ICG:
16 pg/ml) in blank medium, followed by illumination or no
illumination. The cellular uptake of LS-Al-ICG was observed by
a confocal laser scanning microscope (CLSM; Olympus, Japan).

2.10. In vitro cytotoxicity assay

The cytotoxicity of LS-Al-ICG on human umbilical vein
endothelial cells (HUVEC) was studied. HUVEC were cultured
into 96-well plates (1 x 10* cells/well) and then incubated for
4h with LS-Al-ICG at various concentrations (ICG: 0, 1, 2, 4,
8, or 16 pg/ml). Mouse 4T1 mammary carcinoma cells were
seeded overnight in 96-well plates (1 x 10* cells/well), after
which the cells were co-incubated with medium containing
free ICG or LS-Al-ICG (ICG: 0, 1, 2, 4, 8, or 16 pg/ml) for 4 h. Next,
replaced the drug containing medium with blank medium.
The illuminated groups were treated with 808 nm laser for
5min (1 W/cm?). Cell viabilities were evaluated by performing
CCK-8 assay.

2.11. Live/dead staining assay

4T1 cells cultured overnight in laser confocal dishes (5 x 10°
cells/well), then cells were incubated with blank medium
or medium containing LS-Al-ICG (ICG: 16 pg/ml) for 4h. An
808 nm laser was used to irradiate the illuminated groups after
washing with PBS. Additionally, mixed cells with propidium
iodide (PI) and calcein-AM for 30 min, then observed under
CLSM.

2.12. In vitro evaluation of DAMPs

4T1 cells (5x10° cells/well) were treated with blank
medium or medium containing ICG or LS-Al-ICG (ICG:
16 pg/ml). After incubating for 4h, the illuminated groups
were subjected to 10-min laser irradaition, and then all
groups were incubated with a monoclonal antibody against
CRT or HMGB1 for 12h at 4 °C. Subsequently, secondary
antibody and DAPI were incubated with the cells. During
the staining process, the cells were washed repeatedly
with PBS. Ultimately, the fluorescent signals were observed
under a CLSM. To measure ATP release, 4T1 cells were
treated with blank medium or medium containing ICG or
LS-Al-ICG (ICG: 16pug/ml). After 4h incubation, followed
with or without illumination, the cell supernatants were
collected by low-temperature centrifugation. ATP release into
the culture supernatants was detected via the ATP assay
kit.

2.13. In vitro DCs maturation

Bone marrow-derived dendritic cells (BMDCs) were isolated
from BALB/c mice, seeded into Petri dishes (1 x 107
cells/10 m1 RPMI 1640 medium with 10 ng/ml mouse GM-CSF).
Nonadherent and loosely adherent immature BMDCs were
collected on day 7 and then seeded into Petri dishes (1 x 108
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cells/well). Culture supernatants from 4T1 cells subjected to
different treatments (LS-Al-ICG =+ NIR, ICG =+ NIR, and control
treatments) were added to BMDCs in Petri dishes. The BMDCs
were collected after 24h and stained with fluorochrome-
labeled anti-mouse monoclonal antibodies (CD11c-APC,
CD80-FITC, or CD86-PE) for 30min and then analyzed by
flow cytometry. IL-2, TNF-¢, and IFN-y production in culture
supernatants were measured by performing ELISA.

2.14. In vivo biodistributions

Female BALB/c mice (6-8 weeks old) were obtained
from the Laboratory Animal Center of Zhejiang Chinese
Medical University. ICG or LS-Al-ICG (ICG: 4mg/kg) were
intraveneously administrated. To detect the ICG fluorescence
signals, 4T1 tumor-bearing mice were anesthetized at
the specified times (0.25, 0.5, 0.75, 1, 2, 4, 8 and 24h) and
imaged with an IVIS Spectrum Imaging System (Ex=710nm,
Em =745nm). After 24 h, the major organs and tumor tissues
were collected from the sacrificed mice for ex vivo tissue
imaging.

2.15. Anti-tumor effects evaluation

The mice were injected with 4T1 cells subcutaneously on each
side of the back in turn. After 14 d, when the volumes of
the right tumor were close to 150 mm?, the saline, free ICG,
and LS-Al-ICG were intravenously injected into each group of
mice, respectively. The illuminated groups were irradiated for
5min with 808 nm laser (1 W/cm?) on Days 1, 3 and 5. During
this period, temperature elevations in the tumor sites were
taken with an infrared thermal camera. Anti-PD-1 antibody
was intravenously injected on Day 2,4 and 6 (100 pg per mouse
per injection). The mice were maintained in a controlled
temperature and humidity environment with a regular light
and dark cycle (12h light, 12h dark) and were given free food
and water. Body weight and tumor volume were recorded
every 2 d The survival time of mice was recorded from the
beginning of treatment until Day 50. Tumor volumes were
calculated using the Eq. 5:

Length x Width?

Volume (mm3) = 7 (5)

2.16. Analysis of immune responses in vivo

Each group of mice (n = 3) were sacrificed on the seventh day of
treatment. Serum cytokine levels were measured using ELISA
kits. Tumor-draining lymph nodes (TDLNSs), primary tumors
and spleens were dissected to prepare single-cell suspensions.
To evaluate the maturity of DCs, lymphocytes were labeled
with CD11c-APC, CD80-APC, and CD86-PE for flow cytometric
analysis. Splenocytes stained with CD3-FITC, CD8a-PE, and
CD4-APC were utilized to assess T cell activation.

2.17. Histopathology examination
Mice were sacrificed after a 21-d treatment cycle, and the

tumor tissues and major organs were harvested and fixed in
10% paraformaldehyde for 1-2 d All tissues were dehydrated,

embedded, and sectioned, after which H&E staining was
performed with all tissues, and TUNEL assays were performed
with tumor tissues. The tissues were investigated under a
fluorescence microscope (Zeiss).

2.18. Statistical analysis

All experimental data were presented as the mean + standard
deviation (SD), with the sample size indicated. Groups were
compared using SPSS software. P values of < 0.05 were
considered to reflect statistically significant.

3. Results and discussion
3.1.  Preparation and characterization of LS-AL-ICG

Here, we report the development of an innovative metal-
coordinated supramolecular, self-assembling nanosystem
for photothermal immunotherapy. The optimization results
based on the hydrodynamic diameter, zeta potential, PDI,
EE and DL for LS-Al-ICG were shown in Fig. S1 and S2.
As illustrated in Fig. 2A, LS-Al-ICG formed through the co-
assembly of CLS, ICG, and Al**. The morphology and size
distribution of the prepared LS-Al-ICG was confirmed via
TEM imaging (Fig. 2B). As visualized by the TEM images, the
obtained LS-Al-ICG had a regular spherical morphology with
an average diameter of 8.3+2.0nm and zeta potential of
—20.7 £0.7 mV (Fig. 2C). Energy-dispersive X-ray spectroscopy
(EDS) analysis showed that C, O, S, and Al elements existed
in LS-Al-ICG with an atomic ratio of 69.0%, 28.1%, 1.6% and
1.3% (Fig. S3). The XPS spectra further verified the efficient
loading of Al, which existed in a trivalent ionic state (Fig. S4).
The DL and EE values of ICG and Al were next monitored
spectrometrically because these parameters are critical for
biomedical applications. The results showed that the EE
values of ICG and Al were 35.70% + 0.62% and 11.85% =+
0.45%, respectively. The DL values of ICG and Al were 7.10% =+
0.12% and 14.29% + 0.54%, respectively (Fig. 2D-2E). Comparing
the UV-Vis-NIR spectra of monomeric ICG with LS-Al-ICG
revealed a broader Soret band and a red-shifted Q-band for
the LS-Al-ICG with characteristic absorbance peak from 776
to 808 nm, suggesting that the LS-Al-ICG successfully self-
assembled, which is beneficial for 808 nm laser-mediated
photothermal conversion (Fig. 2F) [38].

To study the hydrogen bond assisted self-assembly, we
performed Fourier transform infrared (FTIR) analysis of ICG,
LS and LS-Al-ICG. As shown in Fig. S5, the corresponding
characteristic bonds moved towards lower wavenumbers after
self-assembly indicates the formation of hydrogen bonds.
However, when LS-Al-ICG was stored in PBS (pH 5.0) for
24h, the back-shifts of characteristic bands indicated the
weakening of hydrogen bonds [39]. While the blueshift of the
absorption peak of ICG (from 805 to 787 nm) in the UV-Vis-NIR
spectrum confirms the weakening of -7 stacking interaction
(Fig. S6) [40]. In addition, negligible changes in particle size,
PDI and zeta potentials of LS-Al-ICG in PBS or DMEM with
the presence of serum were observed during 7-d observation
period (Fig. S7).
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7.4.

Computational simulations by molecular docking were
conducted to further clarify the self-assembly mechanism
[41]. As shown in Fig. 2G, Al** was predicted to play a critical
role in self-assembly process. No self-assembly occurred
without AI** due to insufficient molecular interactions
between LS and ICG in terms of 7-r stacking and hydrophobic
interactions. In contrast, when Al3* is present, it can act
as a bridging unit to facilitate the self-assembly process
by forming coordination bonds of 3.0 and 3.1A in length
with the sulfonate groups of LS and ICG, respectively. These
interactions induce the formation of a hydrogen bond (2.1A
in length) between the sulfonate group of LS and the hydroxyl
group of ICG. In addition, the self-assembled LS-Al-ICG system
was stable owing to the higher binding energy of LS-Al-ICG
(—2.84 eV) than that of LS +ICG (—1.88eV) (Fig. 2H).

To further explore the photothermal potential of LS-
Al-ICG, we monitored and recorded their thermal images
and the corresponding photothermal-heating curves. As

displayed in Fig. 2I-2], the temperature of pure water did
not change noticeably following 808 nm laser irradiation,
while LS-Al-ICG displayed a dose-dependent temperature
elevation, suggesting efficient photothermal conversion of LS-
Al-ICG. Free ICG was significantly photolyzed during the third
irradiation-cooling cycle, while the temperature of LS-Al-ICG
did not change significantly during five irradiation-cooling
cycles, suggesting the significant photostability of LS-Al-ICG
(Fig. S8). Notably, the photothermal conversion efficiency () of
LS-Al-ICG was calculated to be 37.85% (Fig. S9), which is higher
than free ICG (22.39%) [42]. The enhanced photostability and
photothermal conversion of LS-Al-ICG may be related to
supramolecular nanostructures [43].

The drug releasing profile was evlauated with a dialysis-
based approach (Fig. 2K). After 24h, 9.14% of ICG was
cumulatively released at pH 7.4, which increased significantly
to 12.95% or 33.67% at pH 6.2 or 5.0, respectively. Thus, ICG
exhibited a pH-sensitive release behavior, which should be
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ascribed to protonation of the sulfonate group that weakened
the coordination effect and hydrogen bond [44].

3.2.  Invitro cellular uptake, cytotoxicity, and
immunostimulatory activity

The cellular uptake of ICG and LS-Al-ICG in vitro was examined
in 4T1 tumor cells by CLSM. As presented in Fig. 3A-3B,
unlike free ICG, LS-Al-ICG was readily internalized into
4T1 cells, simultaneously, the laser irradiation significantly
increased the cellular uptake of LS-Al-ICG, as evidenced by
2.01-fold higher intracellular fluorescence intensity in the
LS-Al-ICG + NIR group than in the LS-Al-ICG group, implying
that the increased cellular uptake of LS-Al-ICG was caused
by NIR. According to reports, the photothermal effect can
cause increased membrane permeability and fluidity, which
contributes to enhanced cellular uptake and causes severe
damage to the cells [45].

Motivated by the photothermal properties and effective
cellular uptake by 4T1 cells, we determined the cytotoxicity
of ICG and LS-Al-ICG in 4T1 cancer cells via CCK-8 assays
to validate the in vitro tumor ablating efficiency mediated
by photothermal effect. The cell-viability assays revealed a
remarkable dose-dependent decrease upon treatment with
ICG or LS-Al-ICG and exposure to NIR laser irradiation, and
the antitumor effect of LS-Al-ICG was greater than that of ICG
(Fig. 3D-3E). Nevertheless, the viability of 4T1 cells and HUVEC
remained above 90% without laser irradiation, indicating that
LS-Al-ICG has low toxicity and good biocompatibility (Fig S10).
Moreover, co-staining was conducted with calcein-AM and PI
to verify the therapeutic efficacy, where the green fluorescence
and red fluorescence are regarded as an indicator of living
cells and dead cells, respectively. As shown in Fig. 3C, LS-
Al-ICG treatment demonstrated no noticeable cytotoxicity
to 4T1 cells without laser irradiation reflected by the solid
green fluorescence. In contrast, intense red fluorescence was
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observed upon laser irradiation, indicating that LS-Al-ICG can
photothermally ablating tumor cells with high efficiency.

To explore the mechanism underlying the superior anti-
tumor efficacy of LS-Al-ICG, we investigated PTT-induced
ICD generation and DCs maturation in vitro. Typical DAMPs
of ICD include CRT translocation to the cell surface, HMGB1
expression, and ATP release. These features can promote
tumor antigen phagocytosis and presentation by DCs,
thereby facilitating the production of CTLs [9,17,46-48]. The
expression levels of DAMPs on 4T1 cells in vitro after different
treatments were examined using CLSM and flow cytometric
measurements (Fig. 4A). The immunofluorescence-staining
images showed that, compared to the moderate upregulation
of CRT and HMGB1 in the ICG+NIR group, after laser
irradiation of 4T1 cells incubated with LS-Al-ICG, intense
green and red fluorescent signals could be detected from
CRT and HMGB1, suggesting that the cytoplasmic levels of
CRT and HMGB1 increased markedly (Fig. 4B). In the LS-Al-
ICG+NIR group, the mean fluorescence intensities for CRT
and HMGBI1 staining were significantly stronger than those in

the ICG + NIR group (approximately 6.0- and 2.5-fold higher
than those in the control group, respectively; Fig. 4C-4D).
Moreover, the ATP level in the LS-Al-ICG+NIR treatment
group was almost 3.0-fold of that in the ICG+ NIR group,
whereas the ICG group and the LS-Al-ICG group did not show
obvious differences when compared with the control group
(Fig. 4E). In summary, LS-Al-ICG-mediated PTT dramatically
elicited ICD in 4T1 cells and triggered an anti-tumor immune
response.

DCs are one of the most important APCs, playing critical
roles in immune responses. DAMPs released by dying tumor
cells during ICD can stimulate DCs maturation and further
activate immune responses [7,26,49]. Therefore, we studied
the in vitro stimulatory effects on BMDCs induced by various
treatments (Fig. 5A). After 24-h incubation with corresponding
4T1 cell culture supernatants, BMDCs harvested from BALB/c
mice were subjected to flow cytometry for analyzing the
expression of CD80" and CD86" of CD11ct DCs. We found
that 4T1 cells treated with LS-Al-ICG+NIR displayed a
much more significant increase in DCs maturity than the
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ICG+NIR and control groups (Fig. 5B-5C). In contrast, free
ICG and LS-Al-ICG exhibited a negligible stimulatory effect
on DCs maturation without NIR irradiation. These results
demonstrated that LS-Al-ICG + NIR efficiently induced DCs
maturation. The secretion levels of cytokines related to DCs
activation (IL-2, TNF-«¢, and IFN-y; important markers of
cellular immunity) in the culture supernatants were recorded
to assess immunoactivation [50]. Fig. 5D-5F reveal that the
LS-Al-ICG + NIR group displayed the highest secretion of IL-
2, TNF-a, and IFN-y. These findings indicate that the ICD
of cancer cells promotes DCs maturation through PTT and
aluminum adjuvants, which is vital for subsequent tumor
immunotherapy of T cell.

3.3. Biodistribution and photothermal imaging of
LS-AL-ICG in vivo

ICG and LS-Al-ICG were injected intravenously into 4T1
tumor-bearing mice to monitor the biodistribution. As
shown in Fig. 6A, after administering ICG and LS-Al-ICG,
intense fluorescence signals were observed throughout the
whole body. ICG fluorescence was barely detectable in mice
administrated with ICG alone at 8h post-administration,
suggesting rapid clearance of free ICG molecules. However,
the LS-Al-ICG exhibited significant fluorescence at tumor
sites for over 24h, demonstrating a prolonged circulation
time and enhanced tumor accumulation (Fig. 6B). As

determined in Fig. 6C, results indicated anticipated
clearance of the supramolecular self-assembly through
the reticuloendothelial system (RES) as marked by LS-Al-ICG
accumulation in liver, spleen, lung, and kidney [51]. Generally,
NPs smaller than 10nm are swiftly filtered and excreted by
the kidneys, showing excellent in vivo safety [52]. However,
because of the ability to extravasate leaky tumor blood
vessels, LS-Al-ICG (<10nm) may show higher opportunity
of the rapid drug accumulation and deep penetration [53].
Nevertheless, the fluorescence intensity of mice was weaker
in the ICG group, further indicating that free ICG was
completely cleared. The semi-quantitative analysis shown in
Fig. 6D indicated that the average intratumoral fluorescence
intensity of LS-Al-ICG was 5.7 times higher than that of free
ICG, suggesting that LS-Al-ICG had excellent performance in
terms of tumor accumulation [38].

In vivo fluorescence experiments showed that NPs
accumulation peaked at approximately 0.75h after
administration. In vivo photothermal treatment was
conducted considering that LS-Al-ICG may degrade at
the tumor sites. At 4h after intravenously injecting mice
with saline, ICG, or LS-Al-ICG, their primary tumors were
subjected to 808nm irradiation (5min, 1W/cm?). Then, the
temperatures of the tumor regions in LS-Al-ICG-injected
mice gradually increased and peaked at approximately 52 °C
after 5min (Fig. 6E-6F). In contrast, the temperatures of the
tumor regions of ICG-treated mice increased inconspicuously
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following irradiation due to insufficient ICG accumulation in
the tumors.

3.4.  In vivo anti-tumor effects

A dual-4T1 tumor model was established to evaluate the
anticancer efficacy of PTT mediated by NIR laser irradiation
and immunotherapy mediated through an aluminum
adjuvant and PD-1 blocking [50,54]. The 4T1 tumor-bearing
mice were randomly divided into six groups: the control group,
ICG group, ICG + NIR group, LS-Al-ICG group, LS-Al-ICG + NIR
group, and LS-Al-ICG+NIR+anti-PD-1 group. Only the
primary tumors were treated after tail vein administration,
whereas distant tumors showed natural growth (Fig. 7A).
As shown in Fig. 7B and Fig. 7E, with the implementation of
irradiation and PD-1 blockade, a remarkable growth inhibitory
effect on primary tumors was observed. What is more, similar
results were also observed regarding the volumes of distant
tumors, implying that an abscopal effect occurred (Fig. 7C).
The distant tumor volumes of the ICG+NIR group were

slightly smaller than those of the control, ICG, and LS-Al-ICG
groups, which shall be ascribed to the slight ICG mediated
ICD-activity for immune response. In contrast, the distant
tumor volumes in the LS-AI-ICG+ NIR group and the LS-
Al-ICG+NIR +anti-PD-1 group were significantly smaller
than those in the ICG+NIR group (P < 0.05). This distinctly
improved therapeutic efficacy could be attributed to PTT-
induced immune responses. Greater changes in the tumor
volumes were observed in the LS-Al-ICG+ NIR + anti-PD-1
group than in the LS-Al-ICG + NIR group, due to the inclusion
of the anti-PD-1 antibody. These observations indicated that
PTT plus modulation of the tumor microenvironment induced
by LS-Al-ICG and PD-1 blockade can dramatically improve the
treatment efficacy and suppress both primary and distant
tumors.

In addition, mice in the LS-AI-ICG + NIR group and LS-Al-
ICG + NIR + anti-PD-1 group exhibited significantly prolonged
survival period. Approximately 80% and 60% of the mice
survived during the 50-d observation period, respectively,
in marked contrast to the mice in the other groups, all of
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which died between 34 and 39 d (Fig. 7D). Furthermore, no
significant abnormalities were observed in the mouse body
weights (Fig. S11), suggesting excellent biocompatibility. H&E
and TUNEL staining results of primary and distant tumor
sections revealed significantly more necrosis and apoptosis
in tumor tissue samples from the LS-AI-ICG + NIR + anti-PD-1
group and the LS-Al-ICG + NIR group than in those from the

other groups, which was consistent with in vivo antitumor
outcomes (Fig. 7F).

Major organs were then harvested for pathological
analysis. In contrast to the control group, no obvious
tissue damage or inflammatory responses were observed
by H&E staining in any sections from the treatment groups,
which indicated the excellent biocompatibility of LS-Al-ICG
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(Fig. S12). The biocompatibility of the metal-coordinated,
supramolecular, self-assembled nanosystem was ascribed
to the NP composition (nontoxic LS self-assembled with
aluminum ion and ICG in water, without any toxic substances
or organic solvents).

3.5.  Assessment of immune activation in vivo

PTT is capable of killing cancer cells and promoting tumor-
specific immune responses. Hence, we predicted that LS-
Al-ICG, combined with PTT and anti-PD-1 therapy, could

effectively activate immune responses in vivo [49,55-57]. Seven
days after different treatments with the dual-4T1 tumor-
bearing mice, we investigated DCs activation in TDLNs
and primary tumors, the proportion of T lymphocytes in
splenocytes, and several key serum cytokine levels.
Combination treatment with PTT based on LS-Al-ICG and
immunotherapy with anti-PD-1 can significantly increase the
expression of CD80" or CD86™" within TDLN (Fig. 8A, 8C-8D).
These results suggest that combination therapy-induced DCs
maturation through the effects of aluminum adjuvants and
the PD-1 antibody. As expected, DCs from the LS-Al-ICG + NIR
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group showed higher expression levels of costimulators than
DCs from the ICG+NIR group, with 8.20% versus 3.83%
CD11c*tCD80" cells and 10.4% versus 4.49% CD11ctCD86"
cells, respectively. These findings were attributed to the fact
that aluminum adjuvants enhance immune responses by
enhancing antigen phagocytosis and processing APCs. In
addition, similar DCs-maturation levels were observed in the
primary tumors, and the differences were less significant
compared to those in DCs from the lymph nodes (Fig. S13).

CTLs and helper T cells play prominent roles in anti-tumor
immune responses by releasing cytotoxins and regulating
adaptive immunity, respectively. Single-cell suspensions were
prepared from mouse spleens, which were evaluated to study
the immune responses induced by LS-Al-ICG. The abundances
of CD4" and CD8™ T cells were detected by flow cytometry (Fig.
8B). Our results showed that different alum forms (such as
aluminum hydroxide and aluminum phosphate) stimulated
humoral immunity with limited effects on CD8" T cells
[26]. However, co-delivering an aluminum adjuvant with
the photosensitizer ICG triggered strong cellular immunity.
The LS-Al-ICG+NIR group showed significantly elevated
percentages of CD4" and CD8" T cells in spleen, whereas
treatment with free ICG (with or without NIR and LS-AI-ICG)
failed to increase the abundances of CD4+ and CD8* T cells.
Notably, combined treatment with LS-Al-ICG and anti-PD-1
blockade increased populations of CD4" and CD8" T cells,
which could explain the priming immunity and remodeling
of immunosuppressive tumor microenvironment (Fig. 8E).

Further, anti-tumor cytokine levels in serum (IL-2, TNF-«,
and IFN-y) of mice were measured. As displayed in Fig. 8F-
8H, compared with the control group, these cytokine levels
were only increased slightly in the ICG + NIR group, indicating
that treatment with free ICG and NIR irradiation had a limited
stimulatory effect on the immune response in vivo. In contrast,
these cytokine levels in the LS-Al-ICG+NIR group and LS-
Al-ICG + NIR + anti-PD-1 group were significantly higher. The
higher cytokine levels of the LS-Al-ICG+ NIR+ anti-PD-1
group (as compared to those of LS-Al-ICG + NIR group) showed
that the immune-checkpoint inhibitor enhanced the immune
response.

4, Conclusions

In summary, we developed a simple strategy for co-delivering
ICG and an aluminum adjuvant using LS as an indispensable
accessory for cancer photothermal immunotherapy. Lignin-
assisted construction of a sub-10nm, supramolecular self-
assembling nanosystem is exceptionally promising for
bridging the superiority between aluminum adjuvants and
ICG. Our in vitro results demonstrated that administering
LS-Al-ICG with NIR irradiation efficiently enhanced cellular
uptake and cytotoxicity in 4T1 cells. Moreover, maximum ICD
promoted BMDCs maturation by increasing the expression
levels of DAMPs and immune-associated cytokines. After tail
vein injection, LS-Al-ICG exhibited high aggregation at tumor
sites, which led to an excellent photothermal-conversion
effect. Anti-PD-1 therapy, when combined with LS-Al-ICG
treatment, triggered the maturation of DCs, which recruited

and activated CTLs for synergized immunotherapy against
primary and distant breast tumors in vivo. This low-cost and
facile strategy provides a feasible regimen for combining
PTT and immunotherapy and serves as a paradigm to show
the promise of naturally derived LS as a biomaterial for
oncotherapy.
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