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Abstract: Endogenous glutathione (GSH) effectively regulates redox homeostasis in the body. This
study aimed to investigate the regulatory mechanism of different dietary levels of GSH supple-
mentation on the intestinal barrier and antioxidant function in a paraquat-induced stress-weaned
piglet model. Our results showed that dietary 0.06% GSH supplementation improved the growth
performance of weaned piglets under normal and stressful conditions to some degree and decreased
the diarrhea rate throughout. Exogenous GSH improved paraquat-induced changes in intestinal
morphology, organelle, and permeability and reduced intestinal epithelial cell apoptosis. Moreover,
GSH treatment alleviated intestinal oxidative stress damage by upregulating antioxidant (GPX4,
CnZnSOD, GCLC, and GCLM) and anti-inflammatory (IL-10) gene expression and downregulating
inflammatory cytokines (IFN-γ and IL-12) gene expression. Furthermore, GSH significantly reduced
the expression levels of constitutive androstane receptor (CAR), RXRα, HSP90, PP2Ac, CYP2B22, and
CYP3A29, and increased the expression levels of GSTA1 and GSTA2 in the jejunum and ileum of
paraquat-induced piglets. We conclude that exogenous GSH protects against oxidative stress damage
by regulating the intestinal barrier, antioxidant capacity, and CAR signaling pathway.

Keywords: glutathione; constitutive androstane receptor; weaned piglets; oxidative stress; intesti-
nal barrier

1. Introduction

In healthy animals, the concentrations of reactive oxide species (ROS) are in a state of
dynamic equilibrium, whereas when the animals are stimulated by internal and external
factors, an excess of free radicals is formed and accumulated in the body, causing oxidative
stress and antioxidant dysfunction [1]. It has been reported that oxidative stress disrupts
the intestinal morphological structure, tight junctions, permeability, and gut microbiota of
weaned piglets, which, in turn, affects the digestion and absorption, material metabolism,
and immune function of the organism [2]. Exogenous supplementation of some nutrients
or antioxidants, such as functional amino acids, mineral elements, vitamins, plant extracts,
and probiotics, can regulate the intestinal barrier function and redox balance of animals
to relieve oxidative stress [3–5]. Additionally, the exogenous addition of nutrients and
antioxidants can provide raw materials for glutathione (GSH) synthesis and increase its
levels in the body, which improves antioxidant capacity and immune function [6].
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The most important of these antioxidant systems in the organism is GSH, which plays
a key role in maintaining a dynamic cellular redox balance [7]. Endogenous GSH can
help the body scavenge free radicals and peroxides by combining its sulfhydryl groups
with free radicals and promoting the synthesis of antioxidant enzymes, such as superoxide
dismutase (SOD), thus maintaining relative stability in the animal body [8]. It is also a
broad-spectrum detoxifying agent that can directly combine with some heavy metal ions,
carcinogenic substances, aflatoxin, and other toxic substances, which are excreted from the
body under the action of enzymes [9]. Animal studies have shown that GSH improves
semen preservation in males, protects follicle development in females, and improves the
antioxidant function of the animal body, promoting growth and enhancing the resistance
of animals to adverse environmental effects [10–13].

The constitutive androstane receptor (CAR) is a lipid-soluble ligand-dependent tran-
scription factor that regulates drug metabolism in vivo and plays a major role in gluconeo-
genesis, lipid metabolism, bile acid metabolism, and apoptosis [14,15]. Furthermore, CAR
regulates the expression of antioxidant genes (e.g., SOD, catalase (CAT), and glutathione
peroxidase (GSH-PX)) and detoxification-encoding genes (e.g., cytochrome P450 (CYP450),
and glutathione-S-transferases (GSTs)) in response to ROS, thereby resisting oxidative stress
caused by adverse internal and external stimuli [15–17]. Excessive intake of acetaminophen
is converted to N-acetyl-p-benzoquinone imine by CYP450, which depletes GSH and causes
oxidative stress and hepatotoxicity; the whole process is apparently dependent on CAR [18].
This suggests that there may be some correlation between GSH and CAR signaling; nev-
ertheless, the regulatory role of GSH in the CAR signaling pathway has not been studied
in detail. In addition, GSH has more applications in aquatic animals and ruminants than
in weaned piglets. Therefore, this study was conducted to investigate whether exogenous
supplementation of GSH in the diet can improve the growth performance and antioxidant
capacity of weaned piglets and its underlying mechanism of action.

2. Materials and Methods

All animal experiments used in this study were approved by the Animal Welfare Com-
mittee of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (protocol
code 20220056 of 21 June 2022; Changsha, China).

2.1. Experimental Materials

Glutathione (purity ≥ 95.51%) was obtained from Hunan Flag Bio-tech (Changsha,
China). Paraquat was purchased from Chengdu Huaxia Chemical Reagent (Chengdu,
China). Three-breed crossbred (Duroc × Landrace × Yorkshire) weaned piglets were
purchased from Hunan Longhua Animal Husbandry Development (Zhuzhou, China).

2.2. Animal and Experimental Design

Thirty-five healthy weaned piglets (Duroc × Landrace × Yorkshire) with similar body
weight (BW = 9.52 ± 0.20 kg) were randomly assigned to 5 groups (n = 7/group) as fol-
lows: control (CON) and paraquat (PQ) groups were fed a basal diet, and GSH treatment
groups were fed experimental diets with 0.01% GSH (LGSH), 0.03% GSH (MGSH), and
0.06% GSH (HGSH). The ingredient and nutrient levels of the basal diets without antibiotics
or antioxidants met the nutrient specifications for pigs with a BW of 10–30 kg according to the
recommendations of the NRC (2012) (Table 1). After 5 days of adaptation, GSH was added
to the basal diet according to the corresponding dose every day, which was directly mixed
into the feed once in the morning. The whole experiment lasted for 33 days; after 4 weeks of
feeding, piglets in the PQ group and different GSH groups were intraperitoneally injected
with paraquat at a dose of 8 mg/kg BW on days 28, 30, and 32. The CON group was injected
with the same volume of saline until slaughter on day 33 (the experiment procedure is shown
in Figure 1A). During the experiment, the piglets were housed individually and provided
free access to water. Feed intake and diarrhea were recorded daily, BW was recorded weekly,
and weekly average daily feed intake (ADFI), average daily gain (ADG), feed conversion
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ratio (FCR), and diarrhea rate (DR) were calculated from the records. The calculation for-
mula is as follows: ADFI = total feed intake/days; ADG = (initial BW − final BW)/days;
FCR = ADFI/ADG; DR = number of diarrhea/(number of pigs per group × days) × 100%.
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The BW, ADG, ADFI, FCR, and DR per week for different groups. Data values with different small 
letter superscripts indicate a significant difference (p < 0.05), while with the same or no letter super-
scripts indicate no significant difference (p > 0.05). Values are expressed as mean ± SEM, n = 7. 

Figure 1. Effect of dietary GSH supplementation at different levels on growth performance in weaned
piglets. (A) Experimental design and timeline (BD—basal diet; NS—normal saline). (B–F) The BW,
ADG, ADFI, FCR, and DR per week for different groups. Data values with different small letter
superscripts indicate a significant difference (p < 0.05), while with the same or no letter superscripts
indicate no significant difference (p > 0.05). Values are expressed as mean ± SEM, n = 7.

Table 1. Composition and nutrient levels of basal diets (air-dry basis, %).

Ingredients Content Nutrient Level 2 Content

Ripening corn 31.45 Net energy (MJ/KG) 24.50
Ripening rice 25.60 Crude protein 17.20

Flour 12.50 Ether extract 3.70
Extruded soybean 6.40 Crude fiber 2.08

Fish meal 3.50 Calcium 0.59
Ripening soybean meal 5.00 Phosphorus 0.51

Fermented soybean meal 5.00 Digestible Lysine 1.30
50% Choline chloride 0.10 Digestible Methionine 0.59

CaHPO3 0.80 Digestible Methionine + Cystine 0.80
Limestone 0.50 Digestible Tryptophan 0.27

Glucose 2.50 Digestible Threonine 0.85
Sucrose 2.50

Soybean oil 1.25
NaCl 0.40

Lysine HCL 0.77
Threonine 0.36

Methionine 0.38
L-Tryptophan 0.12

L-Valine 0.38
Premix 1 0.19

Total 100.00

Note: 1 The premix provided the following per kg of the diet: vitamin A, 10,000 IU; vitamin D, 3000 IU; vitamin E,
30 mg; vitamin K3, 4 mg; vitamin B1, 4 mg; vitamin B2, 10 mg; vitamin B6, 6 mg; vitamin B12, 0.04 mg; nicotinic
acid, 40 mg; pantothenic acid, 20 mg; folic acid, 2 mg; biotin, 0.2 mg; Cu (as copper sulfate pentahydrate), 25 mg;
Fe (as ferrous sulfate), 100 mg; Mn (as manganese sulfate), 25 mg; Zn (as zinc sulfate), 80 mg; I (as Calcium
iodate), 0.8 mg; Se (as sodium selenite), 0.35 mg; and Co (as cobalt chloride), 0.5 mg. 2 Nutrient levels were
calculated values.



Nutrients 2023, 15, 198 4 of 15

2.3. Sample Collection

After fasting for 12 h, blood samples were collected from the anterior vena cava
on the morning of the 33rd day of the experiment and were placed in common blood
collection vessels. The blood was centrifuged at 3000 r/min for 10 min at 4 ◦C, and
serum was collected. At the end of the experiment, all piglets were slaughtered by carotid
exsanguination, and the abdominal cavity was quickly opened to isolate the jejunum and
ileum. The jejunal and ileal tissues (approximately 1 cm) were immediately fixed in 4%
paraformaldehyde and 3% glutaraldehyde for histological analysis. The parts of jejunum
and ileum were collected, then rapidly frozen in liquid nitrogen and stored at −80 ◦C.

2.4. Serum Physiological and Biochemical Properties

Serum malondialdehyde (MDA), total antioxidant capacity (T-AOC), CAT, and SOD
levels were determined using colorimetric assay kits (Beijing Boxbio Science & Technology,
Beijing, China) as previously reported according to the manufacturer’s instructions [19].
Serum GSH-PX, GSH, oxidized glutathione (GSSG), diamine oxidase (DAO), and intestinal
fatty acid binding protein (iFABP) levels were measured using ELISA kits from Jiangsu
Meimian Industrial (Jiangsu, China).

2.5. Intestinal Histomorphology

The jejunal and ileal samples were collected, fixed in 4% paraformaldehyde, dehy-
drated, embedded in paraffin, and sliced into 6 µm sections. After hematoxylin and eosin
staining, the sections were dehydrated and sealed. Six good visual fields were selected to
measure villus height and crypt depth, and the villus height/crypt depth ratio was calcu-
lated as in a previous study [20]. Histological changes were observed using a fluorescence
microscope (BX51; Olympus, Tokyo, Japan).

2.6. Cell Apoptosis

Apoptosis was detected using a one-step TUNEL apoptosis assay kit (Beyotime
Biotech, Shanghai, China). Paraffin sections were dewaxed with xylene, anhydrous ethanol,
90% ethanol, 70% ethanol, and distilled water, then reacted with 20 µg/mL of DNase-free
Proteinase K for 30 min at 25 ◦C, followed by 60 min at 37 ◦C with the configured TUNEL
reaction solution and washed twice with phosphate-buffered saline. After blocking the
slices, the fluorescence signals were observed by fluorescence microscope (DM3000; Leica,
Shanghai, China), and apoptotic cells were counted.

2.7. Immunohistochemical Analysis

The intestinal tissue sections were heated at 60 ◦C, deparaffinized, hydrated, repaired
with antigen, extinguished with endogenous enzymes, and then blocked. The cells were
then incubated with primary antibodies against Claudin 1 (Proteintech, Rosemont, IL, USA),
Occludin (Proteintech, Rosemont, IL, USA), and ZO-1 (Proteintech, Rosemont, IL, USA).
The sections were incubated with horseradish peroxidase-conjugated antibody, stained with
3,30-diaminobenzidine, counterstained with hematoxylin, and then blocked and observed.
The protein expression levels of Claudin 1, Occludin, and ZO-1 were expressed as the average
optical density (the ratio of integrated optical density to the tissue area) in at least six areas
that were randomly selected for counting at 400× magnification as in a previous study [21].

2.8. Transmission Electron Microscopy (TEM)

After fixation with 3% glutaraldehyde, the tissue was postfixed in 1% osmium tetroxide,
dehydrated in a series of acetone concentrations, infiltrated in Epox 812 for a longer period,
and embedded. The semithin sections were stained with methylene blue, and ultrathin
sections were cut with a diamond knife and stained with uranyl acetate and lead citrate.
Sections were examined using a JEM-1400-FLASH Transmission Electron Microscope (JEOL,
Tokyo, Japan) as described previously [22]. Two random photographs were taken for each
ileal section, and the number of mitochondria per unit area (whole section) was counted.
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2.9. Real-Time PCR Analysis

Total RNA was extracted from jejunum and ileum using Trizol (Beyotime, Shang-
hai, China), and the concentration and stability of isolated RNA were determined using
NanoDrop 2000C Spectrophotometers (Thermo Fisher, Waltham, MA, USA). cDNA was
synthesized using the Evo M-MLV reverse transcription kit (Accurate, Changsha, China).
Each sample was evaluated thrice using the SYBR Green Premix Pro Taq HS qPCR Kit
(Accurate, Changsha, China). The PCR procedure was as follows: 95 ◦C for 30 s, 95 ◦C for
5 s, and 60 ◦C for 30 s for 40 cycles. Relative mRNA expression levels were calculated using
the 2−∆∆Ct method and normalized to β-actin or GAPDH expression. The relative mRNA
abundance of each gene was normalized to the piglets fed the basal diet and injected with
saline. The primers used are listed in Table 2.

Table 2. Primers used for quantitative reverse transcription-PCR.

Gene Primers Accession Numbers Product Length (bp)

GPX1 F: TGGGGAGATCCTGAATTG
R: GATAAACTTGGGGTCGGT NM_214201.1 184

GPX4 F: GATTCTGGCCTTCCCTTGC
R: TCCCCTTGGGCTGGACTTT NM_214407.1 173

MnSOD F: GGACAAATCTGAGCCCTAACG
R: CCTTGTTGAAACCGAGCC NM_214127.2 159

CuZnSOD F: TGAAGGGAGAGAAGACAGTGTTAG
R: TCTCCAACGTGCCTCTCTTG NM_001190422.1 181

GCLC F: GATCCTCCAGTTCCTGCACA
R: GAGAGAGAACCAACCTCGTCG XM_021098556.1 87

GCLM F: CACAGCGAGGAGCTTCGAGA
R: TGCGTGAGACACAGTACATTCC XM_001926378.4 117

IFN-γ F: CAGGCCATTCAAAGGAGCAT
R: GAGTTCACTGATGGCTTTGCG NM_213948.1 150

IL-1β F: CCAATTCAGGGACCCTACCC
R: GTTTTGGGTGCAGCACTTCAT NM_214055.1 174

IL-12 F: CAGGCCCAGGAATGTTCAAA
R: CGTGGCTAGTTCAAGTGGTAAG NM_213993.1 188

IL-10 F: CGGCGCTGTCATCAATTTCTG
R: CCCCTCTCTTGGAGCTTGCTA NM_214041.1 89

CAR F: GTGCCTGAACTGTCTCTGCT
R: CCACATGCGCTCCATCTTCT NM_001037996.1 244

RXRα F: CAAGTGCCTGGAACACCTCT
R: ATGGAAGGTAACAGGGTGGC XM_001927453.2 240

HSP90 F: AAGACCGGACCCTCACGATA
R: AGGCATACTGCTCGTCATCG NM_213973.1 231

CCRP F: TGCCCTAGAATTTGCCCCTG
R: GCAAAGACCTCGGACGTACA XM_003131409.5 157

PP2Ac F: GGTGCCATGACCGGAATGTA
R: GTGCTGGGTCAAACTGCAAG NM_214366.1 129

GSTA1 F: AGGACACCCAGGACCAATCTT
R: CTCAGGTACATTCCGGGAGAAG NM_214389.2 199

GSTA2 F: CTACTACGTGGAAGAGCTGGAC
R: GCCCTGCCCACTTTATGAAGAC NM_213850.2 193

CYP1A2 F: TTTGTGGAGACCGCCTCATC
R: GCTTGAATAGGGCGCTTGTG NM_001159614.1 193

CYP2B22 F: GGGAACGTTGGAAGACCCTT
R: CGGGATCTCTGTAGGCGAAG NM_214413.1 228

CYP3A29 F: CCTGAAATTAACCACGCAAGGGCT
R: TCTGGGATGCAGCTTTCTTGACCA NM_214423.1 140

β-actin F: CTGCGGCATCCACGAAACT
R: AGGGCCGTGATCTCCTTCTG XM_003124280.3 147

GAPDH F: AAGGAGTAAGAGCCCCTGGA
R: TCTGGGATGGAAACTGGAA NM_001206359.1 140
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2.10. Statistical Analysis

Data were analyzed using SPSS (version 20.0; IBM-SPSS, Chicago, IL, USA), and
GraphPad Prism (version 8.0; GraphPad Software, San Diego, CA, USA) was used for
graphical processing. Statistical differences in the data were assessed using one-way analy-
sis of variance, followed by Duncan’s multiple comparison test. Values of probability < 0.05
were used to denote statistically significant differences between the groups. Results are
expressed as the mean ± standard error of the mean.

3. Results
3.1. Effect of Dietary GSH Supplementation at Different Levels on Growth Performance and
Intestinal Morphology in Paraquat-Induced Weaned Piglets

Under normal conditions, dietary GSH supplementation had no significant effects
on the growth performance or DR of weaned piglets during four weeks (Figure 1B−F).
However, compared with the CON group, the final BW, ADG, and ADFI in the HGSH
group increased by 7.08%, 8.01%, and 11.54%, respectively, and had the greatest reduction
in DR. In addition, the FCR in the MGSH group decreased. As shown in Figure 2, after
the paraquat challenge, compared with the CON group, the ADG of the other groups was
significantly decreased (p < 0.05); however, compared with the PQ group, the ADG in the
HGSH + PQ group was slightly increased. There was no significant difference in ADFI
or DR (p > 0.05).
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Figure 2. Effect of dietary GSH supplementation on growth performance and jejunal and ileal
morphology in paraquat-induced weaned piglets. (A−E) The IBW (initial BW), FBW (final BW),
ADG, ADFI, and DR for different groups. (F) Jejunal and ileal morphology of weaned piglets and
representative images are shown (original magnifications, ×100; Scale bars = 100 µm). Black arrows
indicate the site of damage. (G) Villus height of jejunum and ileum. (H) Crypt depth of jejunum
and ileum. (I) Vellus height/crypt depth ratio of jejunum and ileum. Data values with different
small letter superscripts indicate a significant difference (p < 0.05), while with the same or no letter
superscripts indicate no significant difference (p > 0.05). Values are expressed as mean ± SEM, n = 7.
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Paraquat treatment led to jejunal and ileal morphological damage (marked with
black arrows) in weaned piglets (Figure 2F). Dietary supplementation with different GSH
concentrations markedly increased (p < 0.05) villus height and the villus height/crypt depth
ratio in the jejunum and ileum of weaned piglets after paraquat treatment, and markedly
decreased (p < 0.05) jejunal crypt depth (Figure 2G−I).

3.2. Effect of Dietary GSH Supplementation on Intestinal Permeability in Paraquat-Induced
Weaned Piglets

TEM images (Figure 3A,C) showed that, under paraquat treatment, the microvilli
of piglets fed the basal diet were short and thick, loosely arranged, and morphologically
irregular; tight junctions were not obvious, and cell gaps were widened; mitochondrial mor-
phology was heterogeneous and significantly reduced in number (p < 0.05), with reduced
and broken cristae; and endoplasmic reticulum appeared mildly dilated. Interestingly, GSH
supplementation mitigated the intestinal ultrastructural injury caused by paraquat. The
results of TUNEL staining showed that paraquat treatment led to a high level of apoptosis
rate in the ileum of weaned piglets than in the CON group (Figure 3B), whereas the addition
of GSH at different concentrations significantly reduced (p < 0.05) the apoptosis rate in the
ileum (Figure 3D).

Nutrients 2023, 15, 198 8 of 16 
 

 

  
Figure 3. Effect of dietary GSH supplementation on ileal ultrastructure and apoptosis rate in para-
quat-induced weaned piglets and representative images are shown. (A) Epithelial cells ultrastruc-
ture in the ileum. Original magnifications, 15,000×; Scale bars = 1 µm. Characteristic description: (a) 
regular microvilli. (b) clear tight junction. (c) normal mitochondria. (d) normal endoplasmic reticu-
lum. (e) irregular microvilli. (f) tight connection is not clear. (g) wide intercellular space. (h) mito-
chondrial pyknosis. (i) mitochondrial swelling. (j) mitochondrial cristae abnormalities. (k) endoplas-
mic reticulum dilatation. (B) TUNEL staining of ileum (all cells shown in blue; apoptotic cells in 
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immunohistochemical results (Figure 4A, B, E, F) revealed that the ZO-1 expression level 
in the jejunum and Occludin, Claudin-1, and ZO-1 expression levels in the ileum of piglets 
injected with paraquat was significantly inhibited (p < 0.05); for oxidatively stressed pig-
lets, GSH treatment significantly increased (p < 0.05) the expression levels of Occludin, 
and ZO-1 in the jejunum and ileum. After paraquat challenge, intestinal permeability was 
significantly changed (Figure 4C, D). Serum iFABP activity and DAO content in the PQ 
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Figure 3. Effect of dietary GSH supplementation on ileal ultrastructure and apoptosis rate in paraquat-
induced weaned piglets and representative images are shown. (A) Epithelial cells ultrastructure in
the ileum. Original magnifications, 15,000×; Scale bars = 1 µm. Characteristic description: (a) regular
microvilli. (b) clear tight junction. (c) normal mitochondria. (d) normal endoplasmic reticulum.
(e) irregular microvilli. (f) tight connection is not clear. (g) wide intercellular space. (h) mitochondrial
pyknosis. (i) mitochondrial swelling. (j) mitochondrial cristae abnormalities. (k) endoplasmic
reticulum dilatation. (B) TUNEL staining of ileum (all cells shown in blue; apoptotic cells in red).
Original magnification, ×400; Scale bars = 50 µm. (C) Number of mitochondria in ileal epithelial cells.
(D) Quantitation of apoptosis rate in the ileum. Data values with different small letter superscripts
indicate a significant difference (p < 0.05), while with the same or no letter superscripts indicate no
significant difference (p > 0.05). Values are expressed as mean ± SEM, n = 7.

To investigate the effect of dietary GSH supplementation on intestinal barrier function
in paraquat-induced weaned piglets, we determined the localization and expression of
intestinal tight junction proteins, such as Occludin, Claudin-1, and ZO-1 proteins. The
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immunohistochemical results (Figure 4A,B,E,F) revealed that the ZO-1 expression level in
the jejunum and Occludin, Claudin-1, and ZO-1 expression levels in the ileum of piglets
injected with paraquat was significantly inhibited (p < 0.05); for oxidatively stressed piglets,
GSH treatment significantly increased (p < 0.05) the expression levels of Occludin, and
ZO-1 in the jejunum and ileum. After paraquat challenge, intestinal permeability was
significantly changed (Figure 4C,D). Serum iFABP activity and DAO content in the PQ
group were markedly higher (p < 0.05) than those in the CON group. As we envisioned,
GSH supplementation reduced paraquat-induced (p < 0.05) intestinal permeability in
piglets, with the best effect observed in the 0.06% GSH group.
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in paraquat-induced weaned piglets and representative images are shown. (A) Immunohistochemical
staining of Claudin-1, Occludin, and ZO-1 in the jejunum (original magnifications, 400×; Scale
bars = 50 µm). (B) Immunohistochemical staining of Claudin-1, Occludin, and ZO-1 in the ileum
(original magnifications, 400×; Scale bars = 50 µm). (C,D) Serum iFABP and DAO levels. (E) The
relative protein expression levels of Claudin-1, Occludin, and ZO-1 in the jejunum (AOD, average
optical density). (F) The relative protein expression levels of Claudin-1, Occludin, and ZO-1 in the
ileum (AOD, average optical density). Data values with different small letter superscripts indicate a
significant difference (p < 0.05), while with the same or no letter superscripts indicate no significant
difference (p > 0.05). Values are expressed as mean ± SEM, n = 7.

3.3. Effect of Dietary GSH Supplementation on Antioxidant Capacity in Paraquat-Induced
Weaned Piglets

To evaluate whether dietary GSH supplementation could alleviate oxidative stress
injury in weaned piglets, the levels of antioxidant-related enzymes in the serum and small
intestine were measured. Compared with the CON group, paraquat challenge caused
a significant increase (p < 0.05) in serum MDA content (Figure 5A), GSH-PX activity
(Figure 5B), and ileal GSSG content (Figure 5F) but markedly decreased (p < 0.05) serum
SOD activity (Figure 5C) and jejunal and ileal GSH/GSSG ratios (Figure 5G). In contrast,
compared with the PQ group, the addition of 0.06% GSH to the diet significantly decreased
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(p < 0.05) the ileal GSSG level (Figure 5F) but significantly increased (p < 0.05) serum T-AOC
content (Figure 5D), SOD activity, and GSH/GSSG ratios in the jejunum and ileum. The
serum T-AOC content and ileal GSH/GSSG ratio in the MGSH+PQ group were significantly
higher (p < 0.05) than those in the PQ group. Nevertheless, there was no obvious change
in GSH content in the jejunum and ileum (p > 0.05) (Figure 5E). The mRNA expression
levels of jejunal GPX4 and ileal MnSOD were significantly increased (p < 0.05) in the PQ
group compared with those in the CON group (Figure 5H,I). Dietary GSH supplementation
significantly increased (p < 0.05) the mRNA expression levels of jejunal CuZnSOD and
GCLC and ileal GPX4, CuZnSOD, GCLC, and GCLM (Figure 5H,I).
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Figure 5. Effects of dietary GSH supplementation on antioxidant capacity in paraquat-induced
weaned piglets. (A−D) MDA, GSH-PX, SOD, and T-AOC levels in serum. (E) GSH levels in the
jejunum and ileum. (F) GSSG levels in the jejunum and ileum. (G) GSH/GSSG ratios in the jejunum
and ileum. (H) The mRNA expression levels of GPX1, GPX4, CuZnSOD, MnSOD, GCLC, and
GCLM in the jejunum. (I) The mRNA expression levels of GPX1, GPX4, CuZnSOD, MnSOD, GCLC,
and GCLM in the ileum. Data values with different small letter superscripts indicate a significant
difference (p < 0.05), while with the same or no letter superscripts indicate no significant difference
(p > 0.05). Values are expressed as mean ± SEM, n = 7.

3.4. Effect of Dietary GSH Supplementation on the Expression of Inflammatory Cytokine and CAR
Pathway-Related Targets in Paraquat-Induced Weaned Piglets

Oxidative stress is generally accompanied by an inflammatory response; we inves-
tigated whether GSH can regulate the gene expression of inflammatory cytokines in the
jejunum and ileum. As shown in Figure 6A,B, the mRNA expression levels of jejunal IFN-γ
and IL-12 in the HGSH+PQ group were significantly lower (p < 0.05) than those in the PQ
group. Moreover, GSH treatment upregulated (p < 0.05) IL-10 mRNA expression in the
jejunum and ileum of paraquat-induced weaned piglets.

To investigate whether GSH could protect intestinal tissues from oxidative stress by
regulating the CAR pathway, we examined the key targets of the CAR pathway in the
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intestine. Compared with the PQ group, the addition of GSH at different concentrations
in the diets dramatically decreased (p < 0.05) the mRNA expression levels of CAR, RXRα,
HSP90, and PP2Ac (Figure 6C) and dramatically decreased (p < 0.05) the mRNA expression
levels of the target genes CYP2B22, and CYP3A29, while increasing (p < 0.05) the mRNA
expression level of the target gene GSTA1 in the jejunum (Figure 6E). In the ileum, GSH
supplementation similarly decreased (p < 0.05) the mRNA expression levels of CAR and
CYP3A29 and increased (p < 0.05) the mRNA expression levels of CCRP, GSTA1, and
GSTA2 (Figure 6D,F).
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Figure 6. Effects of dietary GSH supplementation on the expression of inflammatory cytokines and
CAR-regulated pathway targets in paraquat-induced weaned piglets. (A,B) The mRNA expression
levels of IFN-γ, IL-12, IL-1β, and IL-10 in the jejunum and ileum. (C,D) The mRNA expression levels
of CAR, RXRα, HSP90, CCRP, and PP2Ac in the jejunum and ileum. (E,F) The mRNA expression
levels of CYP1A2, CYP2B22, CYP3A29, GSTA1, and GSTA2 in the jejunum and ileum. Data values
with different small letter superscripts indicate a significant difference (p < 0.05), while with the
same or no letter superscripts indicate no significant difference (p > 0.05). Values are expressed as
mean ± SEM, n = 7.

4. Discussion

The small intestine is an organ in which the host dynamically interacts with the
intestinal luminal environment and is extremely vulnerable to oxidative stress [23]. If the
body continues to generate high levels of ROS for a long time, it can cause irreversible
damage to the cell structure and function, which, in turn, leads to cell necrosis and apoptosis,
endangering the health of the body [24]. Paraquat has been widely used as a method to
induce acute oxidative stress in mammals, as previously described [25–27]. In the current
study, we also used paraquat to obtain an oxidative stress-weaned-piglet model. Our
results showed that, under normal conditions, dietary supplementation with different GSH
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concentrations had no significant effect on the growth performance or DR of weaned piglets.
The findings are similar to those previously reported [28]. The reasons for the unchanged
growth performance in a normal situation may be related to the short experimental period
and the small number of experimental samples. After the paraquat challenge, the ADG
of each group was significantly reduced; however, the addition of 0.06% GSH to the diet
reversed this reduction, indicating that 0.06% GSH may improve the antioxidant ability to
resist stress. In addition, we observed that exogenous GSH reduced the DR and increased
intestinal villus height in oxidative stress-induced-weaned piglets. The higher villus and
shallower crypt indicate a higher digestive and absorptive capacity of the intestine and
a faster cell maturation rate [29], which may predict that exogenous GSH is associated
with an improved intestinal barrier function. We believe that a part of the exogenous
GSH is degraded into its synthetic substrates (glutamate, glycine, and cysteine), which
can stimulate GSH synthesis in vivo and play a functional role, whereas the other part is
directly absorbed and utilized by the body, thus increasing nutrient metabolism, antioxidant
capacity, and immune response.

The intestinal barrier function is an important basis for assessing the health status
of the intestine. An osmotic barrier that selectively allows the passage of nutrients and
water while resisting the effects of bacteria, toxins, and harmful flora in the intestinal
lumen plays a key role in the regulation of the immune system [30,31]. In the present
study, dietary supplementation with GSH improved the intestinal morphology of paraquat-
induced weaned piglets and inhibited the apoptosis of ileal epithelial cells, which suggests
its role in cell renewal and proliferation. Excess ROS produced by oxidative stress leads
to apoptosis and ferroptosis, whereas lipid peroxidation induced by ferroptosis causes
organelle damage such as plasma membrane rupture, endoplasmic reticulum expansion,
and mitochondrial morphological changes [32]. Our results revealed that dietary GSH
supplementation partially alleviated paraquat-induced mitochondrial and endoplasmic
reticulum damage. Similar to previous studies, the depletion of GSH in vivo disrupts
the structural integrity of the mitochondria [33]. These results suggest that dietary sup-
plementation with GSH exerts a protective effect on the intestinal structure of weaned
piglets by attenuating organelle damage and apoptosis. This may be related to exogenous
GSH improving mitochondrial ATP synthesis and energy metabolism and enhancing the
antioxidant capacity of the organism.

Tight junction proteins, which are essential components of the intestinal barrier, reg-
ulate intestinal permeability [34]. In this study, we found that Claudin-1, Occludin, and
ZO-1 proteins were mainly located in the intestinal epithelial cell membrane, and paraquat
challenge disrupted their original distribution and expression. This may be relevant to the
redistribution of nutrient transport channel proteins, which is similar to the study by He
et al. (2020), who found that Gln, an effective precursor for the synthesis of GSH, improves
nutrient transport carrier activity and tight junction permeability [20]. The disruption
of tight junctions leads to various cellular dysfunctions, damage to the intestinal barrier,
and increased permeability, which can promote diseases such as inflammatory bowel dis-
ease [35,36]. However, dietary GSH supplementation attenuated this damage, with similar
results observed by TEM images. Serum iFAPB and DAO activities are also important
indicators of intestinal permeability [37,38]. Diet supplemented with GSH could reduce the
significant elevation of serum iFAPB and DAO activity caused by paraquat, which reduces
intestinal permeability. These results illustrate that dietary supplementation with GSH
modulates oxidative stress-induced disruption of intestinal structure and changes in barrier
regulatory components, improves intestinal barrier function, and restores intestinal health.

To avoid the damage caused by oxidative stress, two antioxidant defense systems exist
in the organism: enzymatic antioxidant systems, including SOD, GSH-PX, and CAT, and
non-enzymatic antioxidant systems, including GSH, VC, VE, and trace elements (e.g., Cu,
Zn, and Se) [39]. Our results revealed that dietary supplementation with GSH increased
T-AOC, SOD activity, and GSH/GSSG ratios and decreased MDA and GSSG levels. Second,
exogenous GSH upregulated the mRNA expression of CuZnSOD, GCLC, and GCLM in the
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jejunum and ileum. These results revealed that exogenous GSH enhanced endogenous
GSH synthesis by up-regulating the expression of the rate-limiting enzyme gene (GCLC/M)
during GSH biosynthesis, which, in turn, affects the activity of other antioxidant enzymes
to improve antioxidant capacity. Furthermore, oxidative stress and inflammatory responses
are interrelated, and oxidative stress damage may trigger inflammatory processes, whereas
pro-inflammatory factors produce more ROS/RNS [40,41]. Our study found that exoge-
nous GSH attenuated the inflammatory response triggered by paraquat, correspondingly
inhibiting the gene expression of the pro-inflammatory factors IFN-γ and IL-12 and promot-
ing the gene expression of the anti-inflammatory factor IL-10. These results indicate that
exogenous GSH supplementation in vivo may evert a protective effect against paraquat-
induced intestinal injury, and the underlying mechanism is likely related to the suppression
of oxidative stress and inflammatory response.

To further elucidate this mechanism, we investigated CAR signaling pathway expres-
sion. In its natural state, CAR is retained in the cytoplasm mainly through cytoplasmic CAR
retention protein (CCRP)-mediated binding to HSP70/90 to form the CAR-CCRP-HSP70/90
complex. Protein phosphatase 2A (PP2A) dephosphorylates CAR and translocates it to
the nucleus, where it binds to RXRα to form a heterodimer, which in turn regulates the
transcription and expression of downstream target genes [42,43]. Our results showed that
paraquat treatment upregulated the mRNA expression levels of CAR, RXRα, and PP2Ac,
but exogenous GSH reversed this effect. The activation of CAR may be crucial in xenobiotic
metabolism and oxidative stress, which is consistent with the results of Yoda et al. (2017),
who found that oral administration of phenethyl isothiocyanate to mice resulted in oxida-
tive stress generation, upregulating the protein expression of UGT1A1 and Cyp2b10, which
was mediated by CAR, whereas N-acetylcysteine suppressed this phenomenon [17]. CAR
can also regulate metabolic and immune processes by modulating downstream effector
target genes (e.g., CYP2B, CYP3A, CYP1A, GSTA1, and GSTA2) [44,45]. We then examined
the expression of downstream target genes and found that exogenous GSH downregulated
the expression levels of CYP2B22 and CYP3A29 and upregulated the expression of GSTA1
and GSTA2 genes by activating CAR. GSTs bind to and react with various electrophilic
xenobiotics, cellular metabolites, environmental pollutants, and drugs to form sulfhydryl
compounds that exert detoxifying effects [46]. The above findings suggest that dietary sup-
plementation with GSH improves piglet intestinal health by inhibiting paraquat-induced
activation of the intestinal CAR signaling pathway while reducing oxidative stress and the
inflammatory response.

5. Conclusions

In conclusion, our results demonstrated that dietary supplementation with GSH
partially improved growth performance and reduced the frequency of diarrhea in paraquat-
induced weaned piglets. Exogenous GSH administration enhanced the activity and mRNA
expression of serum and intestinal antioxidant-related enzymes, inhibited cytokine secre-
tion, reduced the inflammatory response, and improved intestinal structure, tight junction
proteins, intestinal permeability, and apoptosis by regulating the CAR signaling pathway,
thereby alleviating oxidative stress damage. Our study provides a theoretical basis for
exploring the correlations among gut health, oxidative stress damage, and the correspond-
ing treatment strategies. Future research will delve into the role of GSH in mitochondrial
function and the specific ways in which the CAR signaling pathway functions under
stress conditions.
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