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had been adopted to improve T2D, including controlling 
lifestyle and hypoglycemic drug intervention [7–9]. Metfor-
min, one of the biguanides, is the first choice in the treat-
ment of T2D. However, it failed to achieve or maintain 
current glycaemic goals in T2D patients with metformin in 
UK primary care [10], and the incidence of common gastro-
intestinal adverse events of metformin was approximately 
38.3% [11]. The incidence of gastrointestinal adverse events 
of commonly used hypoglycemic drugs rosiglitazone, one 
of the agents of insulin sensitization, and glyburide, one of 
the agents of insulin secretion, both exceeded 21% [11], and 
the incidence of serious adverse events of dapagliflozin, one 
of sodium-glucose cotransporter 2 inhibitors, exceeded 34% 
[12]. Although a lot of research has been accomplished, 
effective and low adverse events treatment methods of T2D 
are still being explored.

Introduction

Type 2 diabetes (T2D) is a complex metabolic disease with 
a high incidence worldwide, of which insulin resistance is a 
remarkable characteristic [1]. The number of T2D patients 
worldwide had nearly quadrupled due to population growth 
and aging [2]. The results of large-scale epidemiological 
studies showed that the number of T2D patients exceeds 
120 million in China [3, 4]. T2D could cause serious com-
plications, such as diabetic ketoacidosis, diabetic neuropa-
thy, etc. [5, 6]. To prevent complications, many approaches 
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Liver is the main target organ for insulin and plays a 
vital role in maintaining the homeostasis of glucose and 
lipid metabolism. The changes in hepatic metabolism could 
cause obesity, T2D, and other diseases. For example, icari-
tin could promote fatty acid oxidation and improve insulin 
sensitivity, thus improving insulin resistance [13]. It was 
reported that the increase of hepatic gluconeogenesis led 
to an increase of blood glucose, which could lead to insu-
lin resistance, leading to T2D [14]. Previous studies have 
shown that the inhibition of hepatic gluconeogenesis was 
beneficial to reduce blood glucose and improve insulin 
resistance [15]. Moreover, the activation of hepatic mito-
chondrial fatty acid oxidation was in favor of maintaining 
glucose homeostasis [16]. Therefore, activating fatty acid 
oxidation and inhibiting gluconeogenesis in hepatic tissue 
can improve insulin resistance.

The human gastrointestinal tract houses a vast and 
diverse gut microbiota that provides nutrients and intrinsic 
immunity. There was increasing evidence that gut micro-
biota fundamentally affects human health and diseases [17]. 
The changes in gut microbiota were related to a series of 
diseases, such as Alzheimer’s disease and T2D [18, 19]. 
In our previous study, we observed that the abundance 
of Lactobacillus murinus in insulin resistance mice fed a 
high-fat diet (HFD) was reduced, which was increased after 
metformin treatment [20]. In addition, the changes in gut 
microbiota caused by exertional heat stroke led to cognitive 
impairment in mice, in which the abundance of L. murinus 
decreased significantly [18]. Studies have shown that Kai-
xin-san could improve cognitive impairment and increase 
the abundance of L. murinus in Alzheimer’s disease model 
rats [21]. As a potential probiotic, L. murinus could reduce 
inflammation related to aging and improve intestinal barrier 
function [22, 23]. In addition, L. murinus reportedly alle-
viated intestinal ischemia/reperfusion injury by promoting 
the release of interleukin-10 (IL-10) [24]. However, the role 
and mechanism of L. murinus in insulin resistance remain 
unclear.

The purpose of the current study is to investigate the role 
of L. murinus in body weight and insulin resistance, and the 
underlying molecular mechanism. The results suggest that 
L. murinus reduces body weight gain and alleviates insu-
lin resistance by promoting the synthesis of L-citrulline, in 
which the underlying molecular mechanism is to improve 
inflammation, promote fatty acid oxidation, and inhibit glu-
coneogenesis. The data indicate that supplementation of L. 
murinus could be a potential therapeutic approach for T2D 
related to insulin resistance.

Methods

Bacterial strains and growth conditions

Lactobacillus murinus frozen stocks (Testobio Co., Ltd, 
Ningbo, China) were added to 5 mL de Man Rogosa and 
Sharpe (MRS) medium (Solarbio Science & Technology 
Co., Ltd., Beijing, China), which were incubated at 37ºC 
under aerobic conditions and passaged. After 8 ~ 10  h of 
growth, OD625 = 0.80 ~ 1.10 of cultures was measured, at 
which time the colony count was 1.5 × 109 CFU/mL by 0.5 
Mcfarland standard [25]. The effects of metformin at dif-
ferent concentrations and different incubation times on the 
growth of L. murinus were evaluated after observing the 
growth for 12 h. Then, the cultures of L. murinus were col-
lected for the analysis of metabolites and key enzymes. In 
addition, 30 µL cultures of L. murinus were added to 3 mL 
MRS medium and incubated at 37ºC under aerobic condi-
tions for 12  h, and then used for gavage of mice. Frozen 
stocks of L. murinus (in MRS medium with 50% glycerol) 
were prepared and stored at − 80ºC for further experiments.

Animal experiments

Six-week-old male C57BL/6J mice were purchased from 
Beijing Vital River Laboratory Animal Technology Co., 
Ltd (Beijing, China). After seven days of acclimatization, 
the mice were randomly grouped according to body weight. 
The control mice were fed with HFD, and the mice in the 
administration group were fed a HFD with administered L. 
murinus (3 × 108 CFU/d) [24] or L-citrulline (300 mg/kg/d) 
[26] by oral gavage for six weeks. After sacrifice, the serum, 
pancreas, and liver of mice were collected for subsequent 
analysis. All mice were housed in static cages at 20 ~ 22ºC, 
under a cycle with 12 h/12 h of darkness and light. Water 
and food were available ad libitum. The animal study proto-
col was approved by the Animal Ethical and Welfare Com-
mittee (approval No. MDKN-2022-009) and followed by 
the National Research Council’s Guide for the Care and Use 
of Laboratory Animals.

Oral glucose tolerance test (OGTT) and insulin 
tolerance test (ITT)

After six weeks of administration, OGTT and ITT were 
performed to evaluate the efficacy. For OGTT, the mice 
were fasted for 12 h and given intragastric glucose (2.0 g/
kg) [27]. The mice were fasted for 6 h and intraperitoneally 
injected with insulin (0.50 U/kg) for ITT [28]. Their blood 
glucose levels were measured using tail bleeds 0, 30, 60, 90, 
and 120 min after the administration of glucose or insulin.
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Biochemical and histopathological analysis

The serum concentrations of fasting blood glucose (FBG), 
total cholesterol (TC), triglyceride, low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), alanine aminotransferase (ALT), and aspartate 
transaminase (AST) were quantified using the kits from 
Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China). The serum concentrations of insulin, IL-1β, IL-6, 
IL-10, tumor necrosis factor-α (TNF-α), lipopolysaccharide 
(LPS) and interferon γ (IFN-γ) were quantified using ELISA 
kits from Jiangsu Meimian Industrial Co., Ltd (Yancheng, 
China). The concentrations of zonula occludens-1 (ZO-1) 
and occludin in intestinal tissues were analyzed by ELISA 
kits. The homeostasis model assessment of insulin resistance 
(HOMA-IR) formula was as follows: HOMA-IR = FBG 
(mmol/L) × insulin (mIU/L)/22.5 [29].

After sacrifice, the liver and pancreas of the mice were 
collected and fixed using 4% paraformaldehyde for histo-
pathological analysis as previously reported [27].

Metabolite analysis

After liquid nitrogen inactivation, 50 µL cultures of L. muri-
nus were mixed with 150 µL pre-cooled methanol acetoni-
trile (1/1, v/v) and extracted for 30 min, of which ketoprofen 
(1000 ng/mL, Solarbio) was the internal standard; the serum 
samples were thawed for 30 min, then 50 µL of each sam-
ple was mixed with 150 µL methanol acetonitrile solution 
(containing ketoprofen as the internal standard). After vor-
texing, the mixture was centrifuged to precipitate the pro-
tein. Then, 100 µL supernatant was used for analysis using 
ultra-high performance liquid chromatography-Q Exactive 
hybrid quadrupole-Orbitrap high-resolution accurate mass 
spectrometry (UHPLC-Q-Orbitrap HRMS) (Thermo Fisher 
Scientific, San Jose, CA, USA) equipped with electrospray 
ionization (ESI) in positive and negative ion modes [30]. 
The samples were separated by a Waters ACQUITY UPLC 
BEH C18 column (2.1 × 100  mm, 1.7  μm) with a column 
temperature of 40ºC. Mobile phases A and B were 0.1% 
formic acid aqueous solution and acetonitrile, respectively. 
The injection volume was 2.0 µL with an injector tempera-
ture of 4ºC, and the flow rate was set to 0.30 mL/min with an 
analysis time of 15 min. Data were acquired in continuum 
mode from m/z 50 to 1200. The liquid phase and MS vari-
ables are listed in Table S1.

The data acquired was preprocessed using the Waters QI 
software. Metabolites of L. murinus were identified after 
subtractive MRS medium. Combining univariate analysis 
and multivariate analysis, the differential metabolites regu-
lated by L. murinus were identified by the Human Metabo-
lome Database (HMDB, https://hmdb.ca/). Multivariate 

analysis included principal component analysis (PCA) and 
orthogonal partial least squares discriminant analysis 
(OPLS-DA), which were performed to identify discrimi-
nating metabolites between the groups [31]. Based on their 
variable importance in the projection (VIP) from the OPLS-
DA model and P value between the groups, the differential 
metabolites (VIP > 1.0 and P < 0.05) were screened.

Western blotting analysis

The liver tissue was lysed for 30  min in RIPA lysis buf-
fer containing PMSF (Solarbio) to extract protein, which 
was quantified using a Bradford protein assay kit (Bio-Rad, 
Hercules, CA, USA). After separated using 10% gel, the 
protein was transferred to polyvinylidene fluoride mem-
branes (Millipore, Bedford, MA, USA). After blocked 
with 5% skim milk, the membranes were incubated with 
primary antibodies against glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH, 1:20000, #10494-1-AP, Protein-
tech Group, Inc.), carnitine palmitoyl transferase 1 (CPT1, 
1:50000, #15184-1-AP, Proteintech), phosphoenolpyruvate 
carboxykinase (PCK, 1:30000, #16754-1-AP, Proteintech), 
and glucose-6-phosphatase (G6Pase, 1:3000, #66860-1-
Ig, Proteintech) overnight at 4  °C. Then, the membranes 
were incubated with HRP-conjugated affinipure goat anti-
rabbit IgG (1:10000, #SA00001-2, Proteintech) or goat 
anti-mouse IgG (1:10000, #SA00001-1, Proteintech) after 
washed with TBST. Protein band images were developed 
using the Tanon 4800 multi-automatic chemiluminescence 
imaging analysis system (Tanon Science & Technology Co., 
Ltd, Shanghai, China). The scanned images were analyzed 
using the ImageJ software.

Statistical analysis

The data were expressed as mean ± SEM. Statistical analy-
sis was performed using GraphPad Prism 8.3 software. The 
differences between the groups were compared using two-
way ANOVA, Student’s t-test, or Mann-Whitney test where 
appropriate, and P values < 0.05 were considered statisti-
cally significant. The specific analysis methods and sample 
sizes are included in the legends.

Results

L. murinus alleviates insulin resistance

With grew well within 12 h (Fig. S1A), L. murinus was reg-
ulated by metformin in a concentration and dose-dependent 
manner (Fig. S1B, C). To investigate the role of L. murinus 
in diabetes, we used HFD-fed mice as a model [29, 32]. After 
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L. murinus improves inflammation, promotes fatty 
acid oxidation and inhibits gluconeogenesis

Studies have shown that HFD resulted in inflammation [27, 
29]. After L. murinus administration, the concentration of 
IL-1β was significantly decreased compared with mice fed 
with HFD (Fig. 2A). Similarly, the concentrations of IL-6 
and TNF-α in mice administered with L. murinus were sig-
nificantly lower than HFD-mice (Fig. 2B, C). On the con-
trary, the concentration of anti-inflammatory factor IL-10 
was significantly increased (Fig. 2D), and the concentration 
of cytokine IFN-γ was significantly increased (Fig. 2E) after 
L. murinus administration. The evidence indicated that L. 
murinus could improve inflammation. The results of West-
ern blotting analysis demonstrated that the expression level 
of CPT1, a key rate-limiting enzyme of fatty acid oxidation, 
was increased in the liver of mice with L. murinus admin-
istration compared to HFD-fed mice. Moreover, compared 
with HFD-fed mice, the expression levels of PCK and 
G6Pase, the key rate-limiting enzymes of hepatic gluconeo-
genesis [15], were significantly decreased in mice adminis-
tered with L. murinus (Fig. 2F). To sum up, these evidences 
showed that L. murinus could improve inflammation, pro-
mote fatty acid oxidation and inhibit gluconeogenesis, thus 
alleviating insulin resistance.

Synthesis of L-citrulline by L. murinus via ornithine 
transcarbamylase

Gut microbiota was regarded as a covert endocrine organ 
with a strong metabolic function, which played a crucial 

six weeks of L. murinus administration, the average body 
weight of mice was significantly lower than that of mice in 
HFD feeding (Fig. 1A), indicating that L. murinus improved 
obesity observed in HFD-fed mice. From the results of 
OGTT, compared with HFD-fed mice, 30 min postprandial 
blood glucose (PBG) and area under the curve (AUC) of 
OGTT in mice with L. murinus administration were sig-
nificantly reduced (Fig. 1B), which showed that L. murinus 
could improve impaired glucose tolerance (IGT) induced 
by HFD. L. murinus could improve insulin sensitivity since 
the AUC of ITT in mice administered with L. murinus was 
significantly lower than that fed with HFD (Fig. 1C). The 
results of HOMA-IR revealed L. murinus could alleviate 
insulin resistance (Fig. 1D). Insulin resistance is the main 
cause of T2D, and it could cause the damage of pancreas and 
liver [27]. The results of hematoxylin-eosin (H&E) staining 
showed that the islets of mice fed with HFD were atrophy 
and disorder, which improved after L. murinus administra-
tion (Fig.  1E). Moreover, fat deposition was observed in 
liver of mice fed with HFD, whereas L. murinus administra-
tion significantly reduced lipid droplets from the results of 
H&E staining and Oil Red O staining (Fig. 1E). The results 
showed that L. murinus could improve the damage of pan-
creas and liver tissue. Meanwhile, L. murinus could regu-
late liver function (Fig. S2A, B) and lipid metabolism (Fig. 
S2C-F). In addition, L. murinus could improve the gut bar-
rier (Fig. S2G, H). In conclusion, the results confirmed that 
L. murinus could alleviate insulin resistance.

Fig. 1  L. murinus alleviates insulin resistance. L. murinus improves 
HFD-induced body weight gain (A), impaired glucose tolerance (B), 
insulin sensitivity (C) and insulin resistance (D). (E) Representative 
photomicrographs of pancreatic tissue with H&E staining, and liver 
tissue with H&E staining and Oil Red O staining (magnification, ×40, 
100 μm). Data are means ± SEM (n = 8). For body weight gain, statisti-

cal analysis was performed using two-way ANOVA, and the rest of the 
statistics were performed with Student’s t-test, *P < 0.05; **P < 0.01, 
***P < 0.001. HFD, high-fat diet; HLM, high-fat diet + L. murinus; 
OGTT, oral glucose tolerance test; AUC, area under the curve; ITT, 
insulin tolerance test; HOMA-IR, homeostasis model assessment of 
insulin resistance
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metabolomics analysis based on UHPLC-Q-Orbitrap 
HRMS. Interestingly, the PCA score plot showed that there 
were significant systematic metabolic differences between 
HFD-mice and mice administered with L. murinus (Fig. 
S4A, B). To explore the metabolites that led to the differ-
ences, the OPLS-DA model was established (Fig. S4C, D), 
suggesting apparent separations between the groups. Finally, 
90 differential metabolites were identified in the serum of 
mice after L. murinus administration, mainly including 
amino acids, dipeptides, fatty acids, lysophospholipids, etc. 
(Table S3). Compared with HFD-mice, the contents of 44 
serum metabolites, including oleoylcarnitine, arginyl-glu-
tamine, linolenelaidic acid, and lysophosphatidylcholine 
(22:4), were significantly decreased, while the contents of 
46 metabolites, including L-citrulline, lysophosphatidic acid 
(LysoPA) (18:2), lysophosphatidylethanolamine (LysoPE) 
(22:5), 2-aminooctanoic acid and 2-aminoacrylic acid, were 
significantly increased after the administration of L. muri-
nus. Surprisingly, the content of L-citrulline increased to 
4.11 times after L. murinus administration (Fig. 3H). There-
fore, we hypothesized that L-citrulline produced by L. muri-
nus via OTC increased into blood, thus alleviating insulin 
resistance.

role in regulating host metabolism by producing bioactive 
metabolites [33, 34]. It was speculated that the metabolites 
produced by L. murinus could play important roles in alle-
viating insulin resistance. Hence, it was of interest to iden-
tify metabolites of L. murinus. Accordingly, the cultures of 
L. murinus were used for the analysis of metabolites based 
on UHPLC-Q-Orbitrap HRMS (Fig. S3). After subtractive 
MRS medium, a total of 147 metabolites of L. murinus were 
identified (Table S2), in which 70 metabolites were regu-
lated by metformin. These regulated metabolites included 
amino acids, carnitine and fatty acids, etc. Surprisingly, the 
content of L-citrulline increased to 7.94 times after metfor-
min regulation. As shown in Fig. 3A, N-acetylornithine was 
synthesized from L-glutamic acid as a precursor, and fur-
ther metabolized into L-ornithine. Further, L-ornithine gen-
erated L-citrulline by ornithine transcarbamylase (OTC). 
L-Citrulline was metabolized to produce L-arginine by 
arginosuccinase (AS). The results showed that the contents 
of L-glutamic acid, N-acetylornithine, and L-arginine were 
significantly decreased after metformin regulation, while 
the content of L-citrulline was significantly increased after 
metformin regulation (Fig. 3B-E). Meanwhile, the concen-
tration of OTC in cultures of L. murinus treated with met-
formin was significantly increased, while the concentration 
of AS was significantly decreased (Fig. 3F, G).

In order to evaluate the regulation of serum metabo-
lites in mice after L. murinus administration, we conducted 

Fig. 2  L. murinus improves inflammation, promotes fatty acid oxida-
tion and inhibits gluconeogenesis. L. murinus inhibits the secretion of 
IL-1β (A), IL-6 (B), and TNF-α (C), while promotes the secretion of 
IL-10 (D) and IFN-γ (E). (F) L. murinus significantly increased CPT1 
expression while decreased PCK and G6Pase expression, and quanti-
fications of CPT1, PCK and G6Pase are shown on the right. Data are 
means ± SEM (n = 6/8). For IFN-γ and CPT1, Mann-Whitney test was 

employed and the rest of the statistics were performed with Student’s 
t-test, *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001. HFD, 
high-fat diet; HLM, high-fat diet + L. murinus; IL-1β, interleukin 
1β; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor α; IL-10, 
interleukin 10; IFN-γ, interferon-γ; CPT1, carnitine palmitoyl trans-
ferase 1; PCK, phosphoenolpyruvate carboxykinase; G6Pase, glucose-
6-phosphatase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase
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Fig. 3  The pathway of L-citrulline synthesis in L. murinus, and the 
content of related metabolites. (A) The pathway of L-citrulline synthe-
sis in L. murinus. The contents of L-glutamic acid (B), N-acetylorni-
thine (C), L-citrulline (D), and L-arginine (E). The concentrations of 
OTC (F) and AS (G) in L. murinus after metformin administration. 
(H) Fold change in increased TOP 5 metabolites of mice after L. muri-

nus administration. Data are means ± SEM (n = 6). Statistical analy-
sis was performed using Student’s t-test, **P < 0.01, ***P < 0.001, 
****P < 0.0001. OTC, ornithine transcarbamylase; AS, arginosuc-
cinase; Con, control; Met, metformin; HFD, high-fat diet; HLM, 
high-fat diet + L. murinus; LysoPE, lysophosphatidylethanolamine; 
LysoPA, lysophosphatidic acid
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L-citrulline improves inflammation, promotes fatty 
acid oxidation and inhibits gluconeogenesis

Compared with mice fed with HFD, the concentration of 
IL-1β was significantly decreased after L-citrulline admin-
istration (Fig. 5A). Analogously, the concentrations of IL-6 
and TNF-α in mice administered with L-citrulline were sig-
nificantly lower than that fed with HFD (Fig. 5B, C). LPS, a 
major component of the outer membrane of Gram-negative 
bacteria, caused inflammation by activating the expression 
of the inflammatory cytokine gene [35]. The serum concen-
tration of LPS in mice administered with L-citrulline was 
significantly lower than that fed with HFD (Fig. 5D). Con-
trary, compared to the mice fed with HFD, the concentra-
tions of anti-inflammatory factor IL-10 and cytokine IFN-γ 
were significantly increased after L-citrulline administra-
tion (Fig. 5E, F). Additionally, compared with mice fed with 
HFD, the expression level of CPT1 was increased, while 
the expression levels of PCK and G6Pase were decreased in 
the liver of mice with L-citrulline administration (Fig. 5G). 
In short, these evidences showed that L-citrulline could 
improve inflammation, promote fatty acid oxidation and 
inhibit gluconeogenesis, thus alleviating insulin resistance.

Discussion

T2D has a high incidence worldwide. To prevent complica-
tions, hypoglycemic drug intervention is the main treatment 
of T2D, including metformin, rosiglitazone, glyburide, 
dapagliflozin, and so on [10–12]. However, there are high 
incidence of adverse events with these commonly used 

L-citrulline alleviates insulin resistance

In order to verify the above hypothesis, the pharmacological 
effect of L-citrulline on alleviating insulin resistance was 
evaluated. With HFD-fed mice as a model, L-citrulline was 
administered for 6 weeks. Obviously, L-citrulline prevented 
the body weight gain observed in HFD-fed mice (Fig. 4A), 
indicating that L-citrulline improved obesity. From the 
results of OGTT, compared with HFD-fed mice, the con-
centrations of FBG and 2 h PBG in mice administered with 
L-citrulline were significantly reduced, and the AUC of 
OGTT was also significantly reduced (Fig. 4B), indicating 
that L-citrulline could improve IGT induced by HFD. The 
AUC of ITT in mice administered with L-citrulline was sig-
nificantly lower than that fed with HFD (Fig. 4C), revealing 
that L-citrulline could improve insulin sensitivity. Further-
more, HOMA-IR in mice administered with L-citrulline 
was decreased compared to HFD-fed mice (Fig. 1D), which 
suggested that L-citrulline could alleviate insulin resistance. 
From the results of H&E staining, the administration of 
L-citrulline improved the atrophy and disorder of islets in 
mice fed with HFD (Fig. 4E). Besides, from the results of 
H&E staining and Oil Red O staining, the administration of 
L-citrulline improved the fat deposition in liver of mice fed 
with HFD (Fig. 4E). The results suggested that L-citrulline 
improved the damage of pancreas and liver tissue, even 
though L-citrulline had no regulating effect on liver func-
tion (Fig. S5A, B). In addition, L-citrulline reduced the con-
centration of total cholesterol (Fig. S5C-F). In conclusion, 
the results confirmed that L-citrulline could alleviate insulin 
resistance.

Fig. 4  L-citrulline alleviates insulin resistance. L-citrulline improves 
HFD-induced body weight gain (A), impaired glucose tolerance (B), 
insulin sensitivity (C) and insulin resistance (D). (E) Representative 
photomicrographs of pancreatic tissue with H&E staining, and liver 
tissue with H&E staining and Oil Red O staining (magnification, 
×40, 100  μm). Data are means ± SEM (n = 10). For 2  h PBG and 

HOMA-IR, Mann-Whitney test was employed and the rest of the sta-
tistics were performed with Student’s t-test, **P < 0.01, ***P < 0.001, 
****P < 0.0001. HFD, high-fat diet; Cit, L-citrulline; FBG, fasting 
blood glucose; PBG, postprandial blood glucose; OGTT, oral glucose 
tolerance test; AUC, area under the curve; ITT, insulin tolerance test; 
HOMA-IR, homeostasis model assessment of insulin resistance
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play an important regulatory role in insulin resistance [20, 
27]. Previous experiments showed that depletion of gut 
commensal bacteria could attenuate intestinal inflammation 
and cognitive dysfunction [21, 24], of which the abundance 
of L. murinus decreased. However, the extensive diversity 
of the gut microbiome hindered the precise determination 
of the role of L. murinus in insulin resistance. For the first 
time, herein, we confirmed that L. murinus alleviated insulin 
resistance. Lactobacillus murinus strains have previously 
been isolated and identified from humans and animals [36]. 
Few reports have indicated the application of L. murinus in 
host health and disease. It has been shown that It has been 
shown that L. murinus might be used as a potential probiotic 
to reduce the incidence of delayed sepsis in neonates [37]. 
In addition, another study showed that L. murinus alleviated 
intestinal ischemia/reperfusion injury through promoting 
the release of IL-10 from M2 macrophages [24]. Various L. 
murinus strains have been further characterized as potential 
probiotics in the food formulation industry. With increased 
public interest in L. murinus-containing probiotics, the 
impacts of L. murinus on insulin resistance are beginning 
to be unraveled.

Gut microbiota exerts a protective role for the gut barrier 
under steady-state conditions due to its high level of plastic-
ity. In the current study, the results indicated that L. murinus 
could promote the expression of ZO-1 and occludin (Fig. 
S2G, H), which are important proteins for maintaining the 
gut barrier [38]. The dysfunction of the gut barrier might 
cause nutrient absorption disorders. It hence promoted islet 

hypoglycemic agents. Biological agent is a new type of 
drug for treating T2D, which has the advantages of excellent 
therapeutic effect, low adverse reactions, and high drug sta-
bility. Probiotics, as a natural and safe microbial agent, have 
gradually entered our research field of vision. As a potential 
probiotic, the role and mechanism of L. murinus in insulin 
resistance remain unclear.

In the present study, for the first time, we confirmed that 
L. murinus supplementation effectively alleviated insulin 
resistance. In addition, L. murinus improved inflammation 
by promoting the secretion of anti-inflammatory factors and 
inhibiting the secretion of pro-inflammatory factors. The 
results in vitro and in vivo suggested that L. murinus pro-
moted the synthesis of L-citrulline. Furthermore, L-citrul-
line alleviated insulin resistance. Congruously, L-citrulline 
improved inflammation by promoting the secretion of anti-
inflammatory factors and inhibiting the secretion of pro-
inflammatory factors. It suggested that the anti-diabetic 
effect of L. murinus was mediated by L-citrulline. It was 
well known that long-term medication was necessary for 
patients with T2D. However, prolonged medication could 
reduce curative effect [10]. It is shocking that adverse events 
were of frequent occurrence. Therefore, we try to explore a 
potential therapeutic approach to alleviate insulin resistance 
from the perspective of probiotics.

Gut microbiota is a complex ecosystem susceptible to the 
surrounding environment and diet [18]. We previously con-
firmed that insulin resistance induced significant gut micro-
biota disorders and indicated that gut microbial metabolites 

Fig. 5  L-citrulline improves inflammation, promotes fatty acid oxida-
tion and inhibits gluconeogenesis. L-Citrulline inhibits the secretion of 
IL-1β (A), IL-6 (B) TNF-α (C), and LPS (D), while promotes the secre-
tion of IL-10 (E) and IFN-γ (F). (G) L-citrulline significantly increased 
CPT1 expression while decreased PCK and G6Pase expression, and 
quantifications of CPT1, PCK and G6Pase are shown on the right. Data 
are means ± SEM (n = 6/10). For IFN-γ and CPT1, Mann-Whitney test 

was employed and the rest of the statistics were performed with Stu-
dent’s t-test, *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001. 
HFD, high-fat diet; Cit, L-citrulline; IL-1β, interleukin 1β; TNF-α, 
tumor necrosis factor α; LPS, lipopolysaccharide; IL-10, interleukin 
10; IFN-γ, interferon-γ; CPT1, carnitine palmitoyl transferase 1; PCK, 
phosphoenolpyruvate carboxykinase; G6Pase, glucose-6-phosphatase; 
GAPDH, glyceraldehyde-3-phosphate dehydrogenase
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Conclusions

L. murinus reduced body weight and alleviated insulin resis-
tance. The effect of L. murinus was mediated by promoting 
the synthesis of L-citrulline, which improved inflammation, 
promoted fatty acid oxidation and inhibited gluconeogen-
esis, thus reducing body weight and alleviating insulin resis-
tance. Our study provides novel evidence for understanding 
the effect of L. murinus on body weight and insulin resis-
tance, contributing to the search for a therapeutic strategy 
in the treatment of T2D from the perspective of probiotics.
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